Advertisements
Advertisements
Question
Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.
Solution
Let VAB be the volume of the largest cone contained in the sphere.
Obviously, for maximum volume, the axis of the cone should be along the height of the sphere.
Let, ∠AOC = θ
∴ AC, the radius of the base of the cone = R sin θ, where R
is the radius of the sphere.
Height of the cone VC = VO + OC = R + R cos θ
Volume of a cone; V = `1/3 pi (AC)^2 xx (VC)`
`=> V = 1/3 piR^2 sin^2 θ (R + R cos theta)`
`=> V = 1/3 piR^3 sin^2 theta (1 + cos theta)`
On differentiating
`therefore dV/(d theta) = 1/3 piR^3 [sin^2 theta (- sin theta) + (1 cos theta) * 2 sin theta cos theta]`
`= 1/3 piR^3 [- sin^3 theta + 2 sin theta cos theta + 2 sin theta (1 - sin^2 theta)]`
`= 1/3 piR^3 [- sin^3 theta + 2 sin theta cos theta + 2 sin theta - 2sin^2 theta]`
`= 1/3 pi R^3 [- 3 sin^3 theta + 2 sin theta + 2 sin theta cos theta]`
For minimum and maximum, `(dV)/(d theta) = 0`
`=> 1/3 pi"R"^3 (- 3 sin^3 theta + 2 sin cos theta + 2 sin theta)` = 0
= - 3 sin3 θ + 2 sin θ cos θ + 2 sin θ = 0
= sin θ (- 3 sin2 θ + 2 cos θ + 2) = 0
= - 3 sin2 θ + 2 cos θ +2 = 0 ...[∵ sin θ ≠ 0]
= -3 (1 - cos2 θ) + 2 cos θ + 2 = 0
= - 3 + cos2 θ + 2 cos θ + 2 = 0
⇒ 3 cos2 θ + 2 cos θ - 1 = 0
⇒ (3 cos θ - 1)(cos θ + 1) = 0
⇒ cos θ = `1/3` cos θ = - 1
But cos θ ≠ 1 because cos θ = - 1 ⇒ θ = π which is not possible.
`therefore cos theta = 1/3`
When `cos theta = 1/3`, then `sin theta = sqrt(1 - cos^2 theta) = sqrt(1 - 1/9)`
`= sqrt(8/9)`
`= (2 sqrt2)/3`
Now `(dV)/(d theta) = 1/3 piR^3 sin theta [- 3 sin^2 theta + 2 + 2 cos theta]`
`= 1/3 piR^3 sin theta (3 cos theta - 1)(cos theta + 1)`
The sign of `cos theta = 1/3, (dV)/(d theta)` changes from +ve to -ve.
∴ V is highest at `theta = cos^-1 (1/3)`.
On decreasing θ, cos θ increases.
Now cos θ = `1/3` then V is maximum.
The height of the cone for this value of cos θ is
VC = R + R cos θ
`= R + R xx 1/3 = (4R)/3`
Radius of cone = AC = R sin θ = `R * (2sqrt2)/3 = (2 sqrt2)/3 R`
∴ Maximum volume of the cone is V
`= 1/3 pi (AC)^2 (VC)`
`= 1/3 pi ((2 sqrt(2R))/3)^2 ((4R')/3)`
`= 1/3 pi xx 8/9 R^2 xx (4R)/3`
`= 8/27 (4/3 piR^3)`
`= 8/27 xx` Volume of sphere
APPEARS IN
RELATED QUESTIONS
Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x).
If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.
A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`g(x) = x/2 + 2/x, x > 0`
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
f (x) = (x −1)2 + 3, x ∈[−3, 1]
What is the maximum value of the function sin x + cos x?
It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.
Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.
A square piece of tin of side 18 cm is to made into a box without a top by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?
A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box
A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.
A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.
The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?
Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.
Determine the maximum and minimum value of the following function.
f(x) = x log x
Find the local maximum and local minimum value of f(x) = x3 − 3x2 − 24x + 5
Divide the number 20 into two parts such that their product is maximum
A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.
The function y = 1 + sin x is maximum, when x = ______
The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______
The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.
AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.
The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.
The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.
The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:
The maximum value of the function f(x) = `logx/x` is ______.
The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.
A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.
Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.
The lateral edge of a regular rectangular pyramid is 'a' cm long. The lateral edge makes an angle a. with the plane of the base. The value of a for which the volume of the pyramid is greatest, is ______.
A rod AB of length 16 cm. rests between the wall AD and a smooth peg, 1 cm from the wall and makes an angle θ with the horizontal. The value of θ for which the height of G, the midpoint of the rod above the peg is minimum, is ______.
Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.
Solution: Let one part be x. Then the other part is 84 - x
Letf (x) = x2 (84 - x) = 84x2 - x3
∴ f'(x) = `square`
and f''(x) = `square`
For extreme values, f'(x) = 0
∴ x = `square "or" square`
f(x) attains maximum at x = `square`
Hence, the two parts of 84 are 56 and 28.
A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.
Determine the minimum value of the function.
f(x) = 2x3 – 21x2 + 36x – 20