English

Show that the right circular cone of least curved surface and given volume has an altitude equal to 2 time the radius of the base. - Mathematics

Advertisements
Advertisements

Question

Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.

Sum

Solution

Let the radius of the cone = r

Height of the cone = h

`therefore V = 1/3 pir^2 "h"` = constant quantity

`therefore r^2h = (3 xx "constant quantity")/pi = k` (assumed)

`r^2h = k, h = k/r^2`                ...(1)

Curved surface S = `pirl = pir sqrt(h^2 + r^2)`

S = `pir sqrt(k^2/r^4 + r^2)`

`= pir sqrt((k^2 + r^6)/r^4)`

`= pi/r sqrt(k^2 + r^6)`

On differentiating,

`therefore (dS)/(dr) = pi [((6r^5)/(2sqrt(r^6 + k^2)) xx r - sqrt(r^6 + k^2) * 1)/r^2]`

`= pi * (3r^6 - (r^6 + k^2))/(r^2 sqrt(r^6 + k^2))`

`= (2r^6 - k^2)/(r^2 sqrt(r^6 + k^2))`

For maximum and minimum, `(dS)/(dr) = 0`

`=> 2r^6 - k^2 = 0`

`=> r^6 = k^2/2`

`=> r^6 = (h^2 r^4)/2`          ...(2)

⇒ h2 = 2r2

∴ h = `sqrt2 r`

At h = `sqrt2 r`, as r passes through `sqrt2 r`

`(dS)/(dr)` changes from -ve to + ve.

∴ S is minimum when h = `sqrt2 r`

Therefore, the height of the right circular cone with the minimum curved surface is `sqrt2` times the radius.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.5 [Page 233]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.5 | Q 24 | Page 233

RELATED QUESTIONS

Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) =x^3, x in [-2,2]`


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].


Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`


Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.


The profit function P(x) of a firm, selling x items per day is given by P(x) = (150 – x)x – 1625 . Find the number of items the firm should manufacture to get maximum profit. Find the maximum profit.


Show that among rectangles of given area, the square has least perimeter.


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


If x + y = 3 show that the maximum value of x2y is 4.


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima

Solution: f(x) = x3 – 9x2 + 24x

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme values, f'(x) = 0, we get

x = `square` or `square`

∴ f''`(square)` = – 6 < 0

∴ f(x) is maximum at x = 2.

∴ Maximum value = `square`

∴ f''`(square)` = 6 > 0

∴ f(x) is maximum at x = 4.

∴ Minimum value = `square`


If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.


If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.


The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.


The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


Find the local minimum value of the function f(x) `= "sin"^4" x + cos"^4 "x", 0 < "x" < pi/2`


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.


A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)


The maximum value of the function f(x) = `logx/x` is ______.


If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.


Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.


The minimum value of 2sinx + 2cosx is ______.


The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.


The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.


Read the following passage:

Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.

One complete of a four-cylinder four-stroke engine. The volume displace is marked
The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area 75π cm2.

Based on the above information, answer the following questions:

  1. If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
  2. Find `(dV)/(dr)`. (1)
  3. (a) Find the radius of cylinder when its volume is maximum. (2)
    OR
    (b) For maximum volume, h > r. State true or false and justify. (2)

If Mr. Rane order x chairs at the price p = (2x2 - 12x - 192) per chair. How many chairs should he order so that the cost of deal is minimum?

Solution: Let Mr. Rane order x chairs.

Then the total price of x chairs = p·x = (2x2 - 12x- 192)x

= 2x3 - 12x2 - 192x

Let f(x) = 2x3 - 12x2 - 192x

∴ f'(x) = `square` and f''(x) = `square`

f'(x ) = 0 gives x = `square` and f''(8) = `square` > 0

∴ f is minimum when x = 8

Hence, Mr. Rane should order 8 chairs for minimum cost of deal.


The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.

Solution: Let x cm and y cm be the length and breadth of a rectangle.

Then its area is xy = 50

∴ `y =50/x`

Perimeter of rectangle `=2(x+y)=2(x+50/x)`

Let f(x) `=2(x+50/x)`

Then f'(x) = `square` and f''(x) = `square`

Now,f'(x) = 0, if x = `square`

But x is not negative.

∴ `x = root(5)(2)   "and" f^('')(root(5)(2))=square>0`

∴ by the second derivative test f is minimum at x = `root(5)(2)`

When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`

∴ `x=root(5)(2)  "cm" , y = root(5)(2)  "cm"`

Hence, rectangle is a square of side `root(5)(2)  "cm"`


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.

  1. Express ‘h’ in terms of ‘r’, using the given volume.
  2. Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
  3. Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
  4. Calculate the minimum cost for painting the dustbin.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×