Advertisements
Advertisements
Question
A square piece of tin of side 18 cm is to made into a box without a top by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
Solution
Let x cm be the length of each side of the square which is to be cut off from each corner of the square tin sheet of side 18 cm.
Let V be the volume of the open box formed by folding up the flaps, then
V = x (18 - 2x) (18 - 2x) = 4x (9 - x)2
= 4 (x3 - 18x2 + 81x)
Differentiate w.r.t.x., we get
`(dV)/dx = 4(3x^2 - 36x + 81) = 12 (x^2 - 12x + 27)`
For maximum / minimum volume
`(dV)/dx = 0`
⇒ 12 (x2 - 12x + 27) = 0
⇒ 12 (x - 3) (x - 9) = 0
⇒ x = 3, 9 but 0 < x < 9
⇒ x = 3
`((d^2V)/dx^2) = 12 (2x - 12) = 24 (x - 6)`
and `((d^2V)/dx^2)_(x=3) = 24 (3 - 6) = -72 <0`
⇒ V has a maximum at x = 3
Hence, the volume of the box is at its maximum when the side of the square to be cut off is 3 cm.
APPEARS IN
RELATED QUESTIONS
If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
f (x) = sin x + cos x , x ∈ [0, π]
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
f (x) = (x −1)2 + 3, x ∈[−3, 1]
At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?
Find two numbers whose sum is 24 and whose product is as large as possible.
Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?
Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.
The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.
The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.
A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.
Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`
Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.
The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it.
Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`
Divide the number 30 into two parts such that their product is maximum.
Show that among rectangles of given area, the square has least perimeter.
Determine the maximum and minimum value of the following function.
f(x) = `x^2 + 16/x`
State whether the following statement is True or False:
An absolute maximum must occur at a critical point or at an end point.
The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.
Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______
If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.
Show that the function f(x) = 4x3 – 18x2 + 27x – 7 has neither maxima nor minima.
If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?
Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.
Find all the points of local maxima and local minima of the function f(x) = (x - 1)3 (x + 1)2
The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.
Read the following passage and answer the questions given below.
In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of `x^2/a^2 + y^2/b^2` = 1. |
- If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x.
- Find the critical point of the function.
- Use First derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.
OR
Use Second Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.
The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.
If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.
The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by
f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`
The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.
The minimum value of the function f(x) = xlogx is ______.
The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.
Divide the number 100 into two parts so that the sum of their squares is minimum.
Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.
- Express ‘h’ in terms of ‘r’, using the given volume.
- Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
- Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
- Calculate the minimum cost for painting the dustbin.