English

If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum? - Mathematics

Advertisements
Advertisements

Question

If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?

Sum

Solution

Let x be the edge of the cube and r be the radius of the sphere.

Surface area of cube = 6x2

And surface area of the sphere = 4πr2

∴ 6x2 + 4πr2 = K  ......(constant)

⇒ r = `sqrt(("K" - 6x^2)/(4pi)`  .....(i)

Volume of the cube = x3 and the volume of sphere = `3/4 pi"r"^3`

∴  Sum of their volumes (V) = Volume of cube + Volume of sphere

⇒ V = `x^3 + 4/3 pi"r"^3`

⇒ V = `x^3 + 4/3 pi xx (("K" - 6x^2)/(4pi))^(3/2)`

Differentiating both sides w.r.t. x, we get

`"dV"/"dx" = 3x^2 + (4pi)/3 xx 3/2("K" - 6x^2)^(1/2) (- 12x) xx 1/((4pi)^(3/2)`

= `3x^2 + (2pi)/((4pi)^(3/2)) xx (-12x) ("K" - 6x^2)^(1/2)`

= `3x^2 + 1/(4pi^(1/2)) xx (-12x) ("K" - 6x^2)^(1/2)`

∴ `"dV"/"dx" = 3x^2 - (3x)/sqrt(pi) ("K" - 6x^2)^(1/2)`  ....(ii)

For local maxima and local minima, `"dV"/"dx"` = 0

∴ `3x^2 - (3x)/sqrt(pi) ("K" - 6x^2)^(1/2)` = 0

⇒ `3x[x - ("k" - 6x^2)^(1/2)/sqrt(pi)]` = 0

x ≠ 0

∴ `x - ("K" - 6x^2)^(1/2)/sqrt(pi)` = 0

⇒ x = `("K" - 6x^2)^(1/2)/sqrt(pi)`

Squaring both sides, we get

x2 = `("K" - 6x^2)/pi`

⇒ `pix^2 = "K" - 6x^2`

⇒ `pix^2 + 6x^2` = K

⇒ `x^2(pi + 6)` = K

⇒ x2 = `"K"/(pi + 6)`

∴ x = `sqrt("K"/(pi + 6)`

Now putting the value of K in equation (i), we get

`6x^2 + 4pir^2 = x^2(pi + 6)`

⇒ `6x^2 + 4pi"r"^2 = pix^2 + 6x^2`

⇒ `4pi"r"^2 = pi"r"^2`

⇒ 4r2 = x2

∴ 2r = x

∴ x:2r = 1:1

Now differentiating equation (ii) w.r.t x, we have

`("d"^2"V")/("dx"^2) = 6x - 3/sqrt(pi) "d"/"dx" [x("K" - 6x^2)^(1/2)]`

= `6x - 3/sqrt(pi)[x * 1/(2sqrt("K" - 6x^2)) xx (-12x) + ("K" - 6x^2)^(1/2) * 1]`

= `6x - 3/sqrt(pi) [(-6x^2)/sqrt("K" - 6x^2) + sqrt("K" - 6x^2)]`

= `6x - 3/sqrt(pi) [(-6x^2 + "K" - 6x^2)/sqrt("K" - 6x^2)]`

= `6x + 3/sqrt(pi) [(12x^2 - "K")/sqrt("K" - 6x^2)]`

Put x = `sqrt("K"/(pi + 6)`

= `6sqrt("K"/(pi + 6)) + 3/sqrt(pi)[((12"K")/(pi + 6) - "K")/sqrt("K" - (6"K")/(pi + 6))]`

= `6sqrt("K"/(pi + 6)) + 3/sqrt(pi) [(12"K" - pi"K" - 6"K")/sqrt((pi"K" + 6"K" - 6"K")/(pi + 6))]`

= `6sqrt("K"/(pi + 6)) + 3/sqrt(pi) [(6"K" - pi"K")/sqrt((pi"K")/(pi + 6))]`

= `6sqrt("K"/(pi + 6)) + 3/(pisqrt("K"))[(6"K" - pi"K") sqrt(pi + 6)] > 0`

So it is minima.

Hence, the required ratio is 1 : 1 when the combined volume is minimum.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application Of Derivatives - Exercise [Page 138]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 6 Application Of Derivatives
Exercise | Q 31 | Page 138

RELATED QUESTIONS

Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x). 


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x2


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) =x^3, x in [-2,2]`


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?


For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.


A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.

Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`


A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].


Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.


Find the maximum and minimum of the following functions : f(x) = x log x


Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.


Determine the maximum and minimum value of the following function.

f(x) = `x^2 + 16/x`


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


Divide the number 20 into two parts such that their product is maximum


Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______ 


If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.


The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.


Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


The set of values of p for which the points of extremum of the function f(x) = x3 – 3px2 + 3(p2 – 1)x + 1 lie in the interval (–2, 4), is ______.


The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.


Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×