मराठी

If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum? - Mathematics

Advertisements
Advertisements

प्रश्न

If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?

बेरीज

उत्तर

Let x be the edge of the cube and r be the radius of the sphere.

Surface area of cube = 6x2

And surface area of the sphere = 4πr2

∴ 6x2 + 4πr2 = K  ......(constant)

⇒ r = `sqrt(("K" - 6x^2)/(4pi)`  .....(i)

Volume of the cube = x3 and the volume of sphere = `3/4 pi"r"^3`

∴  Sum of their volumes (V) = Volume of cube + Volume of sphere

⇒ V = `x^3 + 4/3 pi"r"^3`

⇒ V = `x^3 + 4/3 pi xx (("K" - 6x^2)/(4pi))^(3/2)`

Differentiating both sides w.r.t. x, we get

`"dV"/"dx" = 3x^2 + (4pi)/3 xx 3/2("K" - 6x^2)^(1/2) (- 12x) xx 1/((4pi)^(3/2)`

= `3x^2 + (2pi)/((4pi)^(3/2)) xx (-12x) ("K" - 6x^2)^(1/2)`

= `3x^2 + 1/(4pi^(1/2)) xx (-12x) ("K" - 6x^2)^(1/2)`

∴ `"dV"/"dx" = 3x^2 - (3x)/sqrt(pi) ("K" - 6x^2)^(1/2)`  ....(ii)

For local maxima and local minima, `"dV"/"dx"` = 0

∴ `3x^2 - (3x)/sqrt(pi) ("K" - 6x^2)^(1/2)` = 0

⇒ `3x[x - ("k" - 6x^2)^(1/2)/sqrt(pi)]` = 0

x ≠ 0

∴ `x - ("K" - 6x^2)^(1/2)/sqrt(pi)` = 0

⇒ x = `("K" - 6x^2)^(1/2)/sqrt(pi)`

Squaring both sides, we get

x2 = `("K" - 6x^2)/pi`

⇒ `pix^2 = "K" - 6x^2`

⇒ `pix^2 + 6x^2` = K

⇒ `x^2(pi + 6)` = K

⇒ x2 = `"K"/(pi + 6)`

∴ x = `sqrt("K"/(pi + 6)`

Now putting the value of K in equation (i), we get

`6x^2 + 4pir^2 = x^2(pi + 6)`

⇒ `6x^2 + 4pi"r"^2 = pix^2 + 6x^2`

⇒ `4pi"r"^2 = pi"r"^2`

⇒ 4r2 = x2

∴ 2r = x

∴ x:2r = 1:1

Now differentiating equation (ii) w.r.t x, we have

`("d"^2"V")/("dx"^2) = 6x - 3/sqrt(pi) "d"/"dx" [x("K" - 6x^2)^(1/2)]`

= `6x - 3/sqrt(pi)[x * 1/(2sqrt("K" - 6x^2)) xx (-12x) + ("K" - 6x^2)^(1/2) * 1]`

= `6x - 3/sqrt(pi) [(-6x^2)/sqrt("K" - 6x^2) + sqrt("K" - 6x^2)]`

= `6x - 3/sqrt(pi) [(-6x^2 + "K" - 6x^2)/sqrt("K" - 6x^2)]`

= `6x + 3/sqrt(pi) [(12x^2 - "K")/sqrt("K" - 6x^2)]`

Put x = `sqrt("K"/(pi + 6)`

= `6sqrt("K"/(pi + 6)) + 3/sqrt(pi)[((12"K")/(pi + 6) - "K")/sqrt("K" - (6"K")/(pi + 6))]`

= `6sqrt("K"/(pi + 6)) + 3/sqrt(pi) [(12"K" - pi"K" - 6"K")/sqrt((pi"K" + 6"K" - 6"K")/(pi + 6))]`

= `6sqrt("K"/(pi + 6)) + 3/sqrt(pi) [(6"K" - pi"K")/sqrt((pi"K")/(pi + 6))]`

= `6sqrt("K"/(pi + 6)) + 3/(pisqrt("K"))[(6"K" - pi"K") sqrt(pi + 6)] > 0`

So it is minima.

Hence, the required ratio is 1 : 1 when the combined volume is minimum.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १३८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 31 | पृष्ठ १३८

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.


Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

`f(x) = xsqrt(1-x), x > 0`


Prove that the following function do not have maxima or minima:

g(x) = logx


What is the maximum value of the function sin x + cos x?


Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?


Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.


Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`


Find the maximum and minimum of the following functions : f(x) = `logx/x`


Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.


Solve the following : Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is  `(4r)/(3)`.


Determine the maximum and minimum value of the following function.

f(x) = 2x3 – 21x2 + 36x – 20


A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?


Divide the number 20 into two parts such that their product is maximum


The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______


The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.


Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`


The function `"f"("x") = "x" + 4/"x"` has ____________.


Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.


The point on the curve `x^2 = 2y` which is nearest to the point (0, 5) is


A function f(x) is maximum at x = a when f'(a) > 0.


Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.


A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.


Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×