मराठी

A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the - Mathematics

Advertisements
Advertisements

प्रश्न

A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?

बेरीज

उत्तर

Let the length of one piece be x m and other piece is of length (28 - x) m Let the length of the piece bent into the shape of a circle be x m and length of the other piece bent into the shape of a square is (28 - x) m.

Circumference = 2πr

⇒ 2πr = x

⇒ `r = x/(2pi)`

Area of the circle= π (radius)2

`= pi (x/(2pi))^2 = x^2/(4pi)`

Perimeter of square = 4 side

⇒ 28 - x = 4 side

⇒ side = `(28 - x)/4`

⇒ Area of the square = (side)2

`= ((28 - x)/4)^2`

`= (28 - x)^2/16`

Let A be the sum of the areas of the two figures, then

`A = x^2/(4pi) + (28 - x)^2/16`

Differentiating w.r.t. x, we get

`(dA)/dx = (2x)/(4pi) + (2 (28 - x)(-1))/16`

`= x/(2pi) - (28 - x)/8`

For maximum / minimum, `(dA)/dx = 0`

⇒ `x / (2pi) - (28 - x)/8 = 0`

⇒ ` (4x - 28pi + xpi)/(8pi) = 0`

⇒ `4x + xpi = 28 pi`

⇒ `x = (28pi)/ (4 + pi)`

⇒ `(d^2A)/dx^2 = 1/(2pi) - (-1)/8 = 1/ (2pi) + 1/8`

and `((d^2A)/dx^2)_(x = (28pi)/(4+pi))`

`= 1/(2pi) + 1/8 > 0`

Hence area A is minimum

∴ The wire must be cut at a distance of `(28pi)/(4+pi)` m. from one end.

Hence, the length of the two pieces are `(28pi)/(4 + pi)` m and `(28 - (28pi)/(4+pi)) m  112/(4 + pi)`  m

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.5 [पृष्ठ २३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.5 | Q 22 | पृष्ठ २३३

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.


Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.


The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.


For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.


Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.


Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`


Find the maximum and minimum of the following functions : f(x) = `logx/x`


Divide the number 20 into two parts such that sum of their squares is minimum.


A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.


Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.


Choose the correct option from the given alternatives : 

If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.


Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?


If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.


Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______


The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.


If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The function `"f"("x") = "x" + 4/"x"` has ____________.


The maximum value of the function f(x) = `logx/x` is ______.


Read the following passage and answer the questions given below.


The temperature of a person during an intestinal illness is given by f(x) = 0.1x2 + mx + 98.6, 0 ≤ x ≤ 12, m being a constant, where f(x) is the temperature in °F at x days.

  1. Is the function differentiable in the interval (0, 12)? Justify your answer.
  2. If 6 is the critical point of the function, then find the value of the constant m.
  3. Find the intervals in which the function is strictly increasing/strictly decreasing.
    OR
    Find the points of local maximum/local minimum, if any, in the interval (0, 12) as well as the points of absolute maximum/absolute minimum in the interval [0, 12]. Also, find the corresponding local maximum/local minimum and the absolute ‘maximum/absolute minimum values of the function.

A function f(x) is maximum at x = a when f'(a) > 0.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.


If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.


The minimum value of 2sinx + 2cosx is ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.


A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.


A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.


Divide the number 100 into two parts so that the sum of their squares is minimum.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×