मराठी

Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is 827 of the volume of the sphere. - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.

बेरीज

उत्तर

Let VAB be the volume of the largest cone contained in the sphere.

Obviously, for maximum volume, the axis of the cone should be along the height of the sphere.

Let, ∠AOC = θ

∴ AC, the radius of the base of the cone = R sin θ, where R

is the radius of the sphere.

Height of the cone VC = VO + OC = R + R cos θ

Volume of a cone; V = `1/3 pi (AC)^2 xx (VC)`

`=> V = 1/3 piR^2 sin^2 θ  (R + R cos theta)`

`=> V = 1/3 piR^3  sin^2 theta (1 + cos theta)`

On differentiating

`therefore dV/(d theta) = 1/3 piR^3 [sin^2 theta (- sin theta) + (1  cos theta) * 2 sin theta cos theta]`

`= 1/3 piR^3 [- sin^3 theta + 2 sin theta  cos theta + 2 sin theta  (1 - sin^2 theta)]`

`= 1/3 piR^3 [- sin^3 theta + 2 sin theta cos theta + 2 sin theta - 2sin^2 theta]`

`= 1/3 pi R^3 [- 3 sin^3 theta + 2 sin theta + 2 sin theta cos theta]`

For minimum and maximum, `(dV)/(d theta) = 0`

`=> 1/3 pi"R"^3 (- 3 sin^3 theta + 2 sin cos theta + 2 sin theta)` = 0

= - 3 sin3 θ + 2 sin θ cos θ + 2 sin θ = 0

= sin θ (- 3 sin2 θ + 2 cos θ + 2) = 0

= - 3 sin2 θ + 2 cos θ +2 = 0      ...[∵ sin θ ≠ 0]

= -3 (1 - cos2 θ) + 2 cos θ + 2 = 0

= - 3 + cos2 θ + 2 cos θ + 2 = 0

⇒ 3 cos2 θ + 2 cos θ - 1 = 0

⇒ (3 cos θ - 1)(cos θ + 1) = 0

⇒ cos θ = `1/3`    cos θ = - 1

But cos θ ≠ 1 because cos θ = - 1 ⇒ θ = π which is not possible.

`therefore cos theta = 1/3`

When `cos theta = 1/3`, then `sin theta = sqrt(1 - cos^2 theta) = sqrt(1 - 1/9)`

`= sqrt(8/9)`

`= (2 sqrt2)/3`

Now `(dV)/(d theta) = 1/3 piR^3 sin theta [- 3 sin^2 theta + 2 + 2 cos theta]`

`= 1/3 piR^3 sin theta (3 cos theta - 1)(cos theta + 1)`

The sign of `cos theta = 1/3, (dV)/(d theta)` changes from +ve to -ve.

∴ V is highest at `theta = cos^-1 (1/3)`.

On decreasing θ, cos θ increases.

Now cos θ = `1/3` then V is maximum.

The height of the cone for this value of cos θ is

VC = R + R cos θ

`= R + R xx 1/3 = (4R)/3`

Radius of cone = AC = R sin θ = `R * (2sqrt2)/3 = (2 sqrt2)/3 R`

∴ Maximum volume of the cone is V

`= 1/3 pi (AC)^2 (VC)`

`= 1/3 pi ((2 sqrt(2R))/3)^2 ((4R')/3)`

`= 1/3 pi xx 8/9 R^2 xx (4R)/3`

`= 8/27 (4/3 piR^3)`

`= 8/27 xx` Volume of sphere

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.5 [पृष्ठ २३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.5 | Q 23 | पृष्ठ २३३

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2


Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`h(x) = sinx + cosx, 0 < x < pi/2`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


Find the maximum and minimum values of x + sin 2x on [0, 2π].


Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


Show that a cylinder of a given volume, which is open at the top, has minimum total surface area when its height is equal to the radius of its base.


 Find the point on the straight line 2x+3y = 6,  which is closest to the origin. 


A rectangle is inscribed in a semicircle of radius r with one of its sides on the diameter of the semicircle. Find the dimensions of the rectangle to get the maximum area. Also, find the maximum area. 


Find the maximum and minimum of the following functions : f(x) = `logx/x`


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Solve the following:

A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum


By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima

Solution: f(x) = x3 – 9x2 + 24x

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme values, f'(x) = 0, we get

x = `square` or `square`

∴ f''`(square)` = – 6 < 0

∴ f(x) is maximum at x = 2.

∴ Maximum value = `square`

∴ f''`(square)` = 6 > 0

∴ f(x) is maximum at x = 4.

∴ Minimum value = `square`


Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______ 


If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.


The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


If x is real, the minimum value of x2 – 8x + 17 is ______.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


If y = x3 + x2 + x + 1, then y ____________.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


Read the following passage and answer the questions given below.

In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of `x^2/a^2 + y^2/b^2` = 1.

  1. If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x.
  2. Find the critical point of the function.
  3. Use First derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.
    OR
    Use Second Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.

The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.


Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.


The lateral edge of a regular rectangular pyramid is 'a' cm long. The lateral edge makes an angle a. with the plane of the base. The value of a for which the volume of the pyramid is greatest, is ______.


Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.


Find the maximum profit that a company can make, if the profit function is given by P(x) = 72 + 42x – x2, where x is the number of units and P is the profit in rupees.


The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.

Solution: Let x cm and y cm be the length and breadth of a rectangle.

Then its area is xy = 50

∴ `y =50/x`

Perimeter of rectangle `=2(x+y)=2(x+50/x)`

Let f(x) `=2(x+50/x)`

Then f'(x) = `square` and f''(x) = `square`

Now,f'(x) = 0, if x = `square`

But x is not negative.

∴ `x = root(5)(2)   "and" f^('')(root(5)(2))=square>0`

∴ by the second derivative test f is minimum at x = `root(5)(2)`

When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`

∴ `x=root(5)(2)  "cm" , y = root(5)(2)  "cm"`

Hence, rectangle is a square of side `root(5)(2)  "cm"`


A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.

  1. Express ‘h’ in terms of ‘r’, using the given volume.
  2. Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
  3. Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
  4. Calculate the minimum cost for painting the dustbin.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×