मराठी

Find the maximum and minimum values of x + sin 2x on [0, 2π]. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the maximum and minimum values of x + sin 2x on [0, 2π].

बेरीज

उत्तर

Let f (x) = x + sin2x, 0 ≤ x ≤ 2π

⇒ f' (x) = 1 + 2cos 2x

⇒ For critical points, let f' (x) = 0

⇒ 1 + cos 2x = 0

⇒ `cos 2x = -1/2`

⇒ `cos 2x = -cos  pi/3`

(If 0< x < 2π, then 0< 2x < 4π)

`⇒ cos 2x = cos (pi- pi/3), cos (pi + pi/2), cos (3pi - pi/3), cos (3pi + pi/3)`

⇒ `2x = (2pi)/3 , (4pi)/3, (8pi)/3, (10pi)/3`

⇒ `x = pi/3, (2pi)/3, (4pi)/3, (5pi)/3`

So, for finding maximum and minimum, we evaluate f (x) at `0, 2pi , pi/3, (2pi)/3, (4pi)/3, (5pi)/3`

Now f(0) = 0 + sin 0 = 

f (2π) = 2π + sin 4π = 2π + 0 = 2π

`f (pi/3) = pi/3 + sin  (2pi)/3 = pi/3 + sin (pi - pi/3)`

= `pi/3 + sin  pi/3 = pi/3 + sqrt3/2`

`f ((2pi)/3) = (2pi)/3 + sin  (4pi)/3 = (2pi)/3 + sin (pi + pi/3)`

= `(2pi)/3 -sin  pi/3 = (2pi)/3 - sqrt3/2`

`f((4pi)/3) = (4pi)/3 + sin  (8pi)/3 = (4pi)/3 + sin (2pi + (2pi)/3)`

= `(4pi)/3 + sin  (2pi)/3 = (4pi)/3 + sqrt3/2`

and `f ((5pi)/3) = (5pi)/3 + sin  (10pi)/3 = (5pi)/3 + sin (3pi + pi/3)`

= `(5pi)/3 -sin  pi/3 = (5pi)/3 - sqrt3/2`

Thus, maximum value of f (x) = 2π at x = 2π and minimum value of f (x) = 0 at x = 0.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application of Derivatives - Exercise 6.5 [पृष्ठ २३३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 6 Application of Derivatives
Exercise 6.5 | Q 12 | पृष्ठ २३३

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x2


Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

`f(x) = xsqrt(1-x), x > 0`


Prove that the following function do not have maxima or minima:

g(x) = logx


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


What is the maximum value of the function sin x + cos x?


Find two numbers whose sum is 24 and whose product is as large as possible.


Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?


Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 


Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20


Find the maximum and minimum of the following functions : f(x) = x log x


A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.


Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.


Determine the maximum and minimum value of the following function.

f(x) = x log x


If f(x) = x.log.x then its maximum value is ______.


If x + y = 3 show that the maximum value of x2y is 4.


If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.


The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.


Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______ 


If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.


An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units


The maximum value of sin x . cos x is ______.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


Find all the points of local maxima and local minima of the function f(x) = (x - 1)(x + 1)2


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


If y = alog|x| + bx2 + x has its extremum values at x = –1 and x = 2, then ______.


Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


If x + y = 8, then the maximum value of x2y is ______.


Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×