Advertisements
Advertisements
प्रश्न
Determine the maximum and minimum value of the following function.
f(x) = x log x
उत्तर
f(x) = x log x
∴ f'(x) =`"x" "d"/"dx" (log "x") + log "x" "d"/"dx" ("x")`
`= "x" xx 1/"x" + log "x" xx 1 = 1 + log "x"`
and f''(x) = `0 + 1/"x" = 1/"x"`
Consider, f'(x) = 0
∴ 1 + log x = 0
∴ log x = - 1
∴ log x = - log e = log e-1 = log `(1/"e")`
∴ x = `1/"e"`
For x = `1/"e"`
`f''(1/"e") = 1/(1/"e") = "e" > 0`
∴ f(x) attains minimum value at x = `1/"e"`.
∴ Minimum value = `"f"(1/"e") = 1/"e" log (1/"e") = 1/"e" log "e"^-1`
`= ((- 1)/"e") (1) = ((- 1)/"e")`
∴ The function f(x) has minimum value `(-1)/"e"` at x = `1/"e"`.
APPEARS IN
संबंधित प्रश्न
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = sinx − cos x, 0 < x < 2π
At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?
A square piece of tin of side 18 cm is to made into a box without a top by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?
Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?
A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.
The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?
A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?
A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.
The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.
Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`
A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?
The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:
Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.
The function `"f"("x") = "x" + 4/"x"` has ____________.
A ball is thrown upward at a speed of 28 meter per second. What is the speed of ball one second before reaching maximum height? (Given that g= 10 meter per second2)
A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.
Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.
If y = alog|x| + bx2 + x has its extremum values at x = –1 and x = 2, then ______.
Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.
The minimum value of 2sinx + 2cosx is ______.