मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If x + y = 3 show that the maximum value of x2y is 4. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If x + y = 3 show that the maximum value of x2y is 4.

बेरीज

उत्तर

x + y = 3

∴ y = 3 – x

Let T = x2y = x2(3 – x) = 3x2 – x3 

Differentiating w.r.t. x, we get

`"dT"/("d"x) = 6"x" - 3"x"^2`   ....(i)

Again, differentiating w.r.t. x, we get

`("d"^2"T")/("d"x^2) = 6 - 6"x"`    ...(ii)

Consider, `"dT"/("d"x) = 0`

∴ 6x – 3x2 = 0

∴ x = 2

For x = 2,

`(("d"^2"T")/"dx"^2)_(x = 2)` = 6 – 6(2)

= 6 – 12

= – 6 < 0

Thus, T, i.e., x2y  is maximum at x = 2

For x = 2, y = 3 – x = 3 – 2 = 1

∴ Maximum value of T = x2y = (2)2(1) = 4

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Applications of Derivatives - Miscellaneous Exercise 4 [पृष्ठ ११४]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Applications of Derivatives
Miscellaneous Exercise 4 | Q 4.5 | पृष्ठ ११४

संबंधित प्रश्‍न

If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere


Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2


Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.


Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .


Divide the number 30 into two parts such that their product is maximum.


Determine the maximum and minimum value of the following function.

f(x) = 2x3 – 21x2 + 36x – 20


If f(x) = x.log.x then its maximum value is ______.


Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______ 


The function y = 1 + sin x is maximum, when x = ______ 


The minimum value of the function f(x) = 13 - 14x + 9x2 is ______


The maximum value of `(1/x)^x` is ______.


Range of projectile will be maximum when angle of projectile is


The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.


Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


If y = alog|x| + bx2 + x has its extremum values at x = –1 and x = 2, then ______.


If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.


The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by

f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`


A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×