मराठी

Prove that the Semi-vertical Angle of the Right Circular Cone of Given Volume and Least Curved Surface is Cot − 1 ( √ 2 ) . - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .

बेरीज

उत्तर १

Let:

Radius of the base = r,

Height = h,

Slant height = l,

Volume = V,

Curved surface area = C

\[\text { As, Volume }, V = \frac{1}{3}\pi r^2 h\]

\[ \Rightarrow h = \frac{3V}{\pi r^2}\]

\[\text { Also, the slant height, l } = \sqrt{h^2 + r^2}\]

\[ = \sqrt{\left( \frac{3V}{\pi r^2} \right)^2 + r^2}\]

\[ = \sqrt{\frac{9 V^2}{\pi^2 r^4} + r^2}\]

\[ = \sqrt{\frac{9 V^2 + \pi^2 r^6}{\pi^2 r^4}}\]

\[ \Rightarrow l = \frac{\sqrt{9 V^2 + \pi^2 r^6}}{\pi r^2}\]

\[\text { Now, }\]

\[\text { CSA, C } = \pi rl\]

\[ \Rightarrow C\left( r \right) = \pi r\frac{\sqrt{9 V^2 + \pi^2 r^6}}{\pi r^2}\]

\[ \Rightarrow C\left( r \right) = \frac{\sqrt{9 V^2 + \pi^2 r^6}}{r}\]

\[ \Rightarrow C'\left( r \right) = \frac{r \times \frac{6 \pi^2 r^5}{2\sqrt{9 V^2 + \pi^2 r^6}} - \sqrt{9 V^2 + \pi^2 r^6}}{r^2}\]

\[ = \frac{\left[ \frac{3 \pi^2 r^6 - \left( 9 V^2 + \pi^2 r^6 \right)}{\sqrt{9 V^2 + \pi^2 r^6}} \right]}{r^2}\]

\[ = \frac{3 \pi^2 r^6 - 9 V^2 - \pi^2 r^6}{r^2 \sqrt{9 V^2 + \pi^2 r^6}}\]

\[ = \frac{2 \pi^2 r^6 - 9 V^2}{r^2 \sqrt{9 V^2 + \pi^2 r^6}}\]

\[\text { For maxima or minima, C }'\left( r \right) = 0\]

\[ \Rightarrow \frac{2 \pi^2 r^6 - 9 V^2}{r^2 \sqrt{9 V^2 + \pi^2 r^6}} = 0\]

\[ \Rightarrow 2 \pi^2 r^6 - 9 V^2 = 0\]

\[ \Rightarrow 2 \pi^2 r^6 = 9 V^2 \]

\[ \Rightarrow V^2 = \frac{2 \pi^2 r^6}{9}\]

\[ \Rightarrow V = \sqrt{\frac{2 \pi^2 r^6}{9}}\]

\[ \Rightarrow V = \frac{\pi r^3 \sqrt{2}}{3} or \ r = \left( \frac{3V}{\pi\sqrt{2}} \right)^\frac{1}{3} \]

\[\text { So,} h = \frac{3}{\pi r^2} \times \frac{\pi r^3 \sqrt{2}}{3}\]

\[ \Rightarrow h = r\sqrt{2}\]

\[ \Rightarrow \frac{h}{r} = \sqrt{2}\]

\[ \Rightarrow \cot\theta = \sqrt{2}\]

\[ \therefore \theta = \cot^{- 1} \left( \sqrt{2} \right)\]

\[\text { Also }, \]

\[\text { Since, for } r < \left( \frac{3V}{\pi\sqrt{2}} \right)^\frac{1}{3} , C'\left( r \right) < 0 \text { and for } r > \left( \frac{3V}{\pi\sqrt{2}} \right)^\frac{1}{3} , C'\left( r \right) > 0\]

\[\text { So, the curved surface for r  }= \left( \frac{3V}{\pi\sqrt{2}} \right)^\frac{1}{3} or V = \frac{\pi r^3 \sqrt{2}}{3}\text { is the least } .\]

shaalaa.com

उत्तर २

Volume V = `1/3πr^2h`   ...(1)

Also l2 = h2 + r2   ...(2)

∵ Volume V is given, so V is constant.


Curved area of cone

c = πrl = `πrsqrt(h^2 + r^2)`   ...[By (2)]

c2 = π2r2(h2 + r2)

c2 = `π^2r^2 {(9V^2)/(π^2r^2) + r^2}`   ...`{By (1), h = (3V)/(πr^2)}`

c2 = `(9V^2)/r^2 + π^2r^4`

Differentiate w.r. to ‘r’

`d/(dr) (c^2) = (-18V^2)/r^3 + 4π^2r^3`   ...(3)

and `(d^2(c^2))/(dr^2) = (54V^2)/r^2 + 12π^2r^2`  ...(4)

For least curved area `(d(c^2))/(dr)` = 0

`\implies (-18V^2)/r^3 + 4π^2r^3` = 0

`\implies` 9V2 = 2π2r6

`\implies` `9 xx 1/9 π^2r^4h^2` = 2π2r6 

`\implies` h2 = 2r2

h = `sqrt(2)r`

Also by (4) `(d^2(c^2))/(dr^2) > 0`

∴ c2 is minimum

`\implies` c is also minimum.

Hence c is least when h = `sqrt(2)r`

`\implies h/r = sqrt(2)`

`\implies` cot α = `sqrt(2)`

α = `cot^-1 (sqrt(2))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Maxima and Minima - Exercise 18.5 [पृष्ठ ७३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 18 Maxima and Minima
Exercise 18.5 | Q 21 | पृष्ठ ७३

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).


If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere


Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.


Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = x/2 + 2/x, x > 0`


Prove that the following function do not have maxima or minima:

g(x) = logx


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = sin x + cos x , x ∈ [0, π]


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


What is the maximum value of the function sin x + cos x?


Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?


Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.


Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`


A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.

Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`


Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.


A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].


 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


 Find the point on the straight line 2x+3y = 6,  which is closest to the origin. 


Divide the number 20 into two parts such that sum of their squares is minimum.


Show that among rectangles of given area, the square has least perimeter.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


Determine the maximum and minimum value of the following function.

f(x) = x log x


If f(x) = x.log.x then its maximum value is ______.


The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.


Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______ 


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.


If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`


A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?


An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units


AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


The maximum value of `(1/x)^x` is ______.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.


The function `"f"("x") = "x" + 4/"x"` has ____________.


Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


The maximum value of the function f(x) = `logx/x` is ______.


Read the following passage and answer the questions given below.


The temperature of a person during an intestinal illness is given by f(x) = 0.1x2 + mx + 98.6, 0 ≤ x ≤ 12, m being a constant, where f(x) is the temperature in °F at x days.

  1. Is the function differentiable in the interval (0, 12)? Justify your answer.
  2. If 6 is the critical point of the function, then find the value of the constant m.
  3. Find the intervals in which the function is strictly increasing/strictly decreasing.
    OR
    Find the points of local maximum/local minimum, if any, in the interval (0, 12) as well as the points of absolute maximum/absolute minimum in the interval [0, 12]. Also, find the corresponding local maximum/local minimum and the absolute ‘maximum/absolute minimum values of the function.

The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.


If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.


If y = alog|x| + bx2 + x has its extremum values at x = –1 and x = 2, then ______.


If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


The greatest value of the function f(x) = `tan^-1x - 1/2logx` in `[1/sqrt(3), sqrt(3)]` is ______.


The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).


The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.

Solution: Let x cm and y cm be the length and breadth of a rectangle.

Then its area is xy = 50

∴ `y =50/x`

Perimeter of rectangle `=2(x+y)=2(x+50/x)`

Let f(x) `=2(x+50/x)`

Then f'(x) = `square` and f''(x) = `square`

Now,f'(x) = 0, if x = `square`

But x is not negative.

∴ `x = root(5)(2)   "and" f^('')(root(5)(2))=square>0`

∴ by the second derivative test f is minimum at x = `root(5)(2)`

When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`

∴ `x=root(5)(2)  "cm" , y = root(5)(2)  "cm"`

Hence, rectangle is a square of side `root(5)(2)  "cm"`


Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×