मराठी

Show that the Altitude of the Right Circular Cone of Maximum Volume that Can Be Inscribed in a Sphere of Radius R Is (4r)/3. - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere

Show that the altitude of a right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3` . Also, show that the maximum volume of the cone is `8/27`  of the volume of the sphere.

उत्तर १

`V=1/3piR^2H`
It is clear from the figure that

`R^2+(H−r)^2=r^2`

`⇒R^2+H^2+r^2−2Hr=r^2`

`⇒R^2=2Hr−H^2`

Substituting the value of R2 in the formula for the volume of the cone, we get

`V=1/3pi(2Hr-H^2)H`

` V=2/3πrH^2−π/3H^3`

 

Differentiating with respect to H both sides, we get:

`(dV)/(dH)=4/3πrH−πH^2`

At critical point,`(dV)/(dH)` is 0.

`⇒4/3πrH−πH^2=0`

`⇒H=4/3r`

Differentiating V w.r.t H again, we get:

`(d^2V)/(dH^2)=4/3πr−2πH`

`|(d^2V)/(dH^2)|_(H=4/3r)=−4/3πr <0`


Hence maxima.

Volume of cone =
`1/3πR^2H`

` V=2/3πrH^2−π/3H^3`

Substituting the value of H, we get:

`V=2/3πr(4/3r)^2−π/3(4/3r)^3`

`=>V=8/27(4πr^3−8/3πr^3)`

`=>V=8/27(4/3πr^3)`

`=>V=8/27(volume of sphere)`

 

shaalaa.com

उत्तर २

A sphere of fixed radius (r) is given.

Let R and h be the radius and the height of the cone, respectively.

The volume (V) of the cone is given by,

`V=1/3piR^2h`

Now, from the right triangle BCD, we have:

`BC=sqrt(r^2-R^2)`

`:.h=r+sqrt(r^2-R^2)`

 `V=1/3piR^2(r+sqrt(r^2-R^2))=1/3piR^2r+1/3piR^2sqrt(r^2-R^2)`

`(dV)/(dR)=2/3piRr+2/3piRsqrt(r^2-R^2)+(piR^2)/3 (-2R)/(2sqrt(r^2-R^2))`

`=2/3piRr+2/3piRsqrt(r^2-R^2)-(piR^3)/(3sqrt(r^2-R^2))`

`=2/3piRr+(2piR(r^2-R^2)-piR^3)/(3sqrt(r^2-R^2))`

`2/3piRr+(2piRr^2-3piR^3)/(3sqrt(r^2-R^2))`

Now  

`(dV)/(dR^2)=0`

`=>(2pirR)/3=(3piR^3-2piRr^2)/(3sqrt(r^2-R^2))`

`=>2rsqrt(r^2-R^2)=3R^2-2r^2`

`=>4r^2(r^2-R^2)=(3R^2-2r^2)^2`

`=>4r^4-4r^2R^2=9R^4+4r^4-12R^2r^2`

`=>9R^4-8r^2R^2=0`

`=>9R^2=8r^2`

`=>R^2=(8r^2)/9`

Now,

`(d^2V)/(dR^2)=(2pir)/3+(3sqrt(r^2-R^2)(2pir^2-9piR^2)-(2piRr^2-3piR^3)(-6R)1/(2sqrtr^2-R^2))/(9(r^2-R^2))`

 

`=(2pir)/3+(3sqrt(r^2-R^2) (2pir^2-9piR^2)+(2piRr^2-3piR^3)(3R)1/(2sqrt(r^2-R^2)))/(9(r^2-R^2))`

 

Now when `R^2=(8r^2)/9`it can be shown that `(d^2V)/(dR^2)<0`

∴ The volume is the maximum when `R^2=(8r^2)/9`

When `R^2=(8r^2)/9`height of cone= `r+sqrt(r^2-(8r^2)/9)=r+sqrt(r^2/9)=r+r/3=(4r)/3`

Hence, it can be seen that the altitude of a right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`

Let volume of the sphere be `V_s=4/3pir^3`

`r=3sqrt((3V_s)/(4pi))`

 Volume of cone, V = `1/3piR^2h`

R `(2sqrt2)/3r`

V = `1/3pi((2sqrt2)/3r)xx(4r)/3`

V `1/3pi(8r^2)/9xx(4r)/3`

`V=(32pir^3)/81=32/81pi[(3V_s)/(4pi)]`

 Volume of cone in terms of sphere 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3. 


Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.


Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.


Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = (x −1)2 + 3, x ∈[−3, 1]


A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?


The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.


Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion

Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .


Find the maximum and minimum of the following functions : f(x) = x3 – 9x2 + 24x


Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`


A ball is thrown in the air. Its height at any time t is given by h = 3 + 14t – 5t2. Find the maximum height it can reach.


Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.


An open cylindrical tank whose base is a circle is to be constructed of metal sheet so as to contain a volume of `pia^3`cu cm of water. Find the dimensions so that the quantity of the metal sheet required is minimum.


The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?


A box with a square base is to have an open top. The surface area of the box is 192 sq cm. What should be its dimensions in order that the volume is largest?


Show that among rectangles of given area, the square has least perimeter.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.


Max value of z equals 3x + 2y subject to x + y ≤ 3, x ≤ 2, -2x + y ≤ 1, x ≥ 0, y ≥ 0 is ______ 


If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.


If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.


The minimum value of the function f(x) = 13 - 14x + 9x2 is ______


Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`


Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.


Find the maximum and the minimum values of the function f(x) = x2ex.


Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×