Advertisements
Advertisements
प्रश्न
Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.
उत्तर
We have f(x) = x5 – 5x4 + 5x3 – 1
⇒ f '(x) = 5x4 – 20x3 + 15x2
For local maxima and local minima, f '(x) = 0
⇒ 5x4 – 20x3 + 15x2 = 0
⇒ 5x2(x2 – 4x + 3) = 0
⇒ 5x2(x2 – 3x – x + 3) = 0
⇒ x2(x – 3)(x – 1) = 0
∴ x = 0, x = 1 and x = 3
Now f '(x) = 20x3 – 60x2 + 30x
⇒ `"f''"(x)_("at" x = 0)` = 20(0)3 – 60(0)2 + 30(0) = 0
Which is neither maxima nor minima.
∴ f (x) has the point of inflection at x = 0
`"f''"(x)_("at" x = 1)` = 20(1)3 – 60(1)2 + 30(1)
= 20 – 60 + 30
= –10 < 0 Maxima
`"f''"(x)_("at" x = 2)` = 20(3)3 – 60(3)2 + 30(3)
= 540 – 540 + 90
= 90 > 0 Minima
The maximum value of the function at x = 1
f (x) = (1)5 – 5(1)4 + 5(1)3 – 1
= 1 – 5 + 5 – 1
= 0
The minimum value at x = 3 is
f (x) = (3)5 – 5(3)4 + 5(3)3 – 1
= 243 – 405 + 135 – 1
= 378 – 406
= – 28
Hence, the function has its maxima at x = 1 and the maximum value = 0 and it has minimum value at x = 3 and its minimum value is – 28.
APPEARS IN
संबंधित प्रश्न
Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = x2
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
`h(x) = sinx + cosx, 0 < x < pi/2`
At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?
Find two numbers whose sum is 24 and whose product is as large as possible.
Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.
Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has
- local maxima
- local minima
- point of inflexion
A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box
Find the point on the straight line 2x+3y = 6, which is closest to the origin.
Find the maximum and minimum of the following functions : f(x) = `logx/x`
Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.
Solve the following : A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted.
Solve the following:
A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.
Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.
If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.
The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.
Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`
The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.
Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.
The maximum value of the function f(x) = `logx/x` is ______.
Let A = [aij] be a 3 × 3 matrix, where
aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, "," "otherwise"):}`
Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.
The greatest value of the function f(x) = `tan^-1x - 1/2logx` in `[1/sqrt(3), sqrt(3)]` is ______.
Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.
Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.
If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).
Find the maximum and the minimum values of the function f(x) = x2ex.
Divide the number 100 into two parts so that the sum of their squares is minimum.
A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?
Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.
- Express ‘h’ in terms of ‘r’, using the given volume.
- Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
- Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
- Calculate the minimum cost for painting the dustbin.