Advertisements
Advertisements
Question
A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.
Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`
Solution
Let P be a point on the hypotenuse of ∆ABC.
Draw perpendicular PL from P on AB and PM from P on BC.
Let ∠ACB = θ = ∠APL
AP = a sec θ, PC = b cosec θ
Let the length of the hypotenuse be l, then
l = AP + PC
= a sec θ + b cosec θ
On differentiating with respect to θ,
`therefore (dl)/(d theta) = a sec theta tan theta - b cosec theta cot theta`
For maximum and minimum, `(dl)/(d theta) = 0`
⇒ a sec θ tan θ - b cosec θ cot θ = 0
`=> a 1/(cos θ) * (sin θ)/(cos θ) - b 1/(sin θ) * (cos θ)/(sin θ) = 0`
`=> (a sin θ)/(cos^2 θ) - (b cos θ)/(sin^2 θ) = 0`
⇒ a sin3 θ - b cos3 θ = 0
⇒ a sin3 θ = b cos3 θ
`=> (sin^3 θ)/(cos^3 θ) = b/a`
`=> tan^3 θ = b/a`
`=> tan θ = (b/a)^(1//3)`
On differentiating again,
`(d^2l)/(d theta) = a (sec θ * sec^2 θ + tan θ * sec θ tan θ) - b [cosec θ (- cosec^2 θ) + cot θ (- cosec θ cot θ)]`
`= a sec θ (sec^2 θ + tan^2 θ) + b cosec θ xx (cosec^2 θ xx cot^2 θ)`
`because 0 < theta < pi/2` So all trigonometric ratios of θ are positive.
`therefore (d^2 l)/(d theta)^2` = + ve i.e. l is minimum.
a > 0 and b > 0
`therefore (d^2 l)/(d theta)^2` = + ve
When `tan theta = (b/a)^(1/3)` then l is minimum.
∴ Minimum value of l = a sec θ + b cosec θ
`= a sqrt (a^(2/3) + b^(2/3))/(a^(1/3)) + b sqrt (a^(2/3) + b^(2/3))/ b^(1/3)`
`= sqrt (a^(2/3) + b^(2/3)) (a^(2/3) + b^(2/3))`
`= (a^(2/3) + b^(2/3))^(3/2).`
APPEARS IN
RELATED QUESTIONS
Find the maximum and minimum value, if any, of the following function given by h(x) = x + 1, x ∈ (−1, 1)
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = x3 − 6x2 + 9x + 15
A wire of length 28 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into a circle. What should be the length of the two pieces so that the combined area of the square and the circle is minimum?
Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`
Find the maximum area of an isosceles triangle inscribed in the ellipse `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.
Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has
- local maxima
- local minima
- point of inflexion
Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .
Show that a cylinder of a given volume, which is open at the top, has minimum total surface area when its height is equal to the radius of its base.
The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it.
Find the point on the straight line 2x+3y = 6, which is closest to the origin.
Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20
Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.
Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.
Divide the number 20 into two parts such that their product is maximum.
If f(x) = x.log.x then its maximum value is ______.
Find the local maximum and local minimum value of f(x) = x3 − 3x2 − 24x + 5
If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.
The function y = 1 + sin x is maximum, when x = ______
If x is real, the minimum value of x2 – 8x + 17 is ______.
Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.
The maximum value of `(1/x)^x` is ______.
Find all the points of local maxima and local minima of the function f(x) = (x - 1)3 (x + 1)2
Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`
If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.
Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].
The function f(x) = x5 - 5x4 + 5x3 - 1 has ____________.
The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.
The maximum value of the function f(x) = `logx/x` is ______.
The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.
A rod AB of length 16 cm. rests between the wall AD and a smooth peg, 1 cm from the wall and makes an angle θ with the horizontal. The value of θ for which the height of G, the midpoint of the rod above the peg is minimum, is ______.
Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.
Read the following passage:
Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.
|
Based on the above information, answer the following questions:
- If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
- Find `(dV)/(dr)`. (1)
- (a) Find the radius of cylinder when its volume is maximum. (2)
OR
(b) For maximum volume, h > r. State true or false and justify. (2)
Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.
Find the maximum profit that a company can make, if the profit function is given by P(x) = 72 + 42x – x2, where x is the number of units and P is the profit in rupees.
Complete the following activity to divide 84 into two parts such that the product of one part and square of the other is maximum.
Solution: Let one part be x. Then the other part is 84 - x
Letf (x) = x2 (84 - x) = 84x2 - x3
∴ f'(x) = `square`
and f''(x) = `square`
For extreme values, f'(x) = 0
∴ x = `square "or" square`
f(x) attains maximum at x = `square`
Hence, the two parts of 84 are 56 and 28.
A right circular cylinder is to be made so that the sum of the radius and height is 6 metres. Find the maximum volume of the cylinder.
Determine the minimum value of the function.
f(x) = 2x3 – 21x2 + 36x – 20