English

A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light - Mathematics

Advertisements
Advertisements

Question

A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening

Sum

Solution

Let x and y be the length and breadth of the rectangle.

Radius of the semi - circle `= x/2`

Circumference of the semi - circle = `(pix)/2.`

Perimeter of the window

AB + BC + AD + DC

`x + 2y + (pix)/2= 10`

⇒ 2x + 4y + πx = 20

⇒ `y = (20 - (2 + pi)x)/4`

Area of the window = area of rectangle + area of a semicircle.

`A = xy + 1/2 pi (x/2)^2`

`= x ((20 - (2 + pi)x)/4) + (pix^2)/8.`

`A = (20x - (2 + pi) x^2)/4 + (pix^2)/8.`

∴ `(dA)/dx = (20 - (2 + pi) 2x)/4 + (2pix)/8`

For maxima / minima of A, 

`(dA)/dx = 0`

⇒ `(20 - (2 + pi) 2x)/4 + (2pix)/8 = 0`

⇒ 20 - (2 + π) 2x + πx = 0

⇒ 20 + x (π - 4 - 2π) = 0

⇒ 20 - x (4 + π) = 0

⇒ `x = 20/ (4 + pi)`

`(d^2A)/dx^2 = (-(2 + pi)2)/4 + (2pi)/8`

`= (-4 -2pi + pi)/4`

` = (-4 -pi)/4`

⇒ `(d^2A)/dx^2 < 0`

Hence the window admit the maximum light when x = length =  `20/ (4 + pi)`

and breadth `y = (20 - (2 + pi) 20/(4 + pi))/4`

`= (80 + 20pi - 40 - 20 pi)/(4 (4 + pi))`

`= 40/ (4(4 + pi))`

`= 10/ (4 + pi).`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.6 [Page 243]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.6 | Q 11 | Page 243

RELATED QUESTIONS

Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x). 


Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.


Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x3 − 6x2 + 9x + 15


What is the maximum value of the function sin x + cos x?


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.


For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.


An open tank with a square base and vertical sides is to be constructed from a metal sheet so as to hold a given quantity of water. Show that the cost of material will be least when the depth of the tank is half of its width. If the cost is to be borne by nearby settled lower-income families, for whom water will be provided, what kind of value is hidden in this question?


Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.


Find the maximum and minimum of the following functions : f(x) = 2x3 – 21x2 + 36x – 20


Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`


Divide the number 30 into two parts such that their product is maximum.


Find the largest size of a rectangle that can be inscribed in a semicircle of radius 1 unit, so that two vertices lie on the diameter.


The profit function P(x) of a firm, selling x items per day is given by P(x) = (150 – x)x – 1625 . Find the number of items the firm should manufacture to get maximum profit. Find the maximum profit.


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Solve the following : Show that a closed right circular cylinder of given surface area has maximum volume if its height equals the diameter of its base.


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.


The minimum value of the function f(x) = 13 - 14x + 9x2 is ______


AB is a diameter of a circle and C is any point on the circle. Show that the area of ∆ABC is maximum, when it is isosceles.


The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.


If x is real, the minimum value of x2 – 8x + 17 is ______.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.


The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is ____________.


Find the area of the largest isosceles triangle having a perimeter of 18 meters.


The point on the curve `x^2 = 2y` which is nearest to the point (0, 5) is


The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.


If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.


A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.


The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.


A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.


Find the maximum and the minimum values of the function f(x) = x2ex.


If x + y = 8, then the maximum value of x2y is ______.


A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?


Sumit has bought a closed cylindrical dustbin. The radius of the dustbin is ‘r' cm and height is 'h’ cm. It has a volume of 20π cm3.

  1. Express ‘h’ in terms of ‘r’, using the given volume.
  2. Prove that the total surface area of the dustbin is `2πr^2 + (40π)/r`
  3. Sumit wants to paint the dustbin. The cost of painting the base and top of the dustbin is ₹ 2 per cm2 and the cost of painting the curved side is ₹ 25 per cm2. Find the total cost in terms of ‘r’, for painting the outer surface of the dustbin including the base and top.
  4. Calculate the minimum cost for painting the dustbin.

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×