English

The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and x3 and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three time - Mathematics

Advertisements
Advertisements

Question

The sum of the surface areas of a rectangular parallelopiped with sides x, 2x and `x/3` and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.

Sum

Solution

It is given that, the sum of the surface areas of a rectangular parallelepiped with sides x, 2x and `x/3` and a sphere is constant.

Let S be the sum of both the surface area.

∴ S = 2`(x * 2x + 2x * x/3  +x/3 * x) + 4pi"r"^2` = k

⇒ `4pi"r"^2 = "k" - 6x^2`

⇒ r2 = `("k" - 6x^2)/(4pi)`

⇒ r = `sqrt(("k" - 6x^2)/(4pi)`  .....(i)

Let V denotes the sum of the volume of both the parallelepiped and the sphere.

Then, V = `2x * x * x/3 + 4/3 pi"r"^3`

= `2/3 x^3 + 4/3 pi"r"^3`

= `2/3 x^3 + 4/3pi(("kk" - 6x^2)/(4pi))^(3/2)`

= `2/3 x^3 + 4/3 pi (("k" - 6x^2)/(4pi))^(3/2)`

⇒ V = `2/3 x^3 + 1/(6sqrt(pi)) ("k" - 6x^2)^(3/2)`  ....(ii)

Differentiating w.r.t. x,

`"dV"/"dx" = 2/3 * 3x^2 + 1/(6sqrt(pi)) * 3/2 * ("k" - 6x^2)^(1/2)(-12x)`

= `2x^2 - (3x)/sqrt(pi) ("k" - 6x^2)^(1/2)`  ....(iii)

Let `"dV"/"dx"` = 0

⇒ `2x^2 = (3x)/sqrt(pi) ("k" - 6x^2)^(1/2)`

⇒ `4x^4 = (9x^2)/pi ("k" - 6x^2)`

⇒ `4pix^4 = 9"k"x^2 - 54x^4`

⇒ `x^2 = (9"k")/(4pi + 54)`

⇒ x = `3sqrt("k"/(4pi + 54))`  .....(iv)

Clearly this is point minima.

When x = `3sqrt("k"/(4pi + 54))`

`"r"^2 = ("k" - 6) ((9"k")/(4pi + 54))/(4pi)`

= `("k"(4pi + 54) - 54"k")/(4pi(4pi + 54))`

= `(4"k"pi)/(4pi(4pi + 54))`

= `"k"/(4pi + 54)`

⇒ r = `sqrt("k"/(4pi + 54))`

⇒ x = 3r

Also V = `2/3x^3 + 4/3 pi"r"^3`

= `2/3(3"r")^3 + 4/3 pi"r"^3`

= `18"r"^3 + 4/3 pi"r"^3`

= `(18 + 4/3 pi)"r"^3`

= `((54 + 4pi)/3)("k"/(4pi + 54))^(3/2)`

= `"k"^(3/2)/(3(4pi + 54)^(3/2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application Of Derivatives - Exercise [Page 138]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 6 Application Of Derivatives
Exercise | Q 34 | Page 138

RELATED QUESTIONS

Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) =x^3, x in [-2,2]`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].


Find the maximum and minimum values of x + sin 2x on [0, 2π].


Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`


Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].


Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.


Solve the following: 

Find the maximum and minimum values of the function f(x) = cos2x + sinx.


A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum


The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.


Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.


The distance of that point on y = x4 + 3x2 + 2x which is nearest to the line y = 2x - 1 is ____________.


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


Divide 20 into two ports, so that their product is maximum.


Read the following passage and answer the questions given below.

In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of `x^2/a^2 + y^2/b^2` = 1.

  1. If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x.
  2. Find the critical point of the function.
  3. Use First derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.
    OR
    Use Second Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.

A function f(x) is maximum at x = a when f'(a) > 0.


Let f: R → R be a function defined by f(x) = (x – 3)n1(x – 5)n2, n1, n2 ∈ N. Then, which of the following is NOT true?


If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


The minimum value of 2sinx + 2cosx is ______.


The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.


The minimum value of the function f(x) = xlogx is ______.


The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.


Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×