English

Find the absolute maximum value and the absolute minimum value of the following function in the given interval: f(x)=4x-1xx2,x∈[-2,92] - Mathematics

Advertisements
Advertisements

Question

Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`

Sum

Solution

Given function f(x) = 4x `- 1/2 x^2,` interval `[-2,9/2]`

∴ f'(x) = 4 - `1/2`. 2x = 4 - x

If f'(x) = 0, then 4 - x = 0 ⇒ x = 4

At x = -2, f(-2) = 4 (-2) - `1/2 (-2)^2`

`= - 8 - 1/2 xx 4`

= - 8 - 2

= - 10

At x = 4, `f(4) = 4(4) - (4)^2/2`

`= 16 - 16/2`

= 16 - 8

= 8

At x = `9/2`, `f (9/2) = 4 xx 9/2 - 1/2 xx 81/4`

`= 18 - 81/8`

`= (144 - 81)/8`

`= 63/8`

= 7.875

∴ Absolute maximum value of f (x) = 8 at x = 4

Absolute minimum value of f (x) = -10 at x = -2

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.5 [Page 232]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.5 | Q 4.3 | Page 232

RELATED QUESTIONS

Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere


Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

g(x) = x3 − 3x


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = (x −1)2 + 3, x ∈[−3, 1]


Find the maximum value of 2x3 − 24x + 107 in the interval [1, 3]. Find the maximum value of the same function in [−3, −1].


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


Of all the closed cylindrical cans (right circular), of a given volume of 100 cubic centimetres, find the dimensions of the can which has the minimum surface area?


For all real values of x, the minimum value of `(1 - x + x^2)/(1+x+x^2)` is ______.


A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening


Find the points at which the function f given by f (x) = (x – 2)4 (x + 1)3 has

  1. local maxima
  2. local minima
  3. point of inflexion

Show that the surface area of a closed cuboid with square base and given volume is minimum, when it is a cube.


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box


Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.


An open cylindrical tank whose base is a circle is to be constructed of metal sheet so as to contain a volume of `pia^3`cu cm of water. Find the dimensions so that the quantity of the metal sheet required is minimum.


The profit function P(x) of a firm, selling x items per day is given by P(x) = (150 – x)x – 1625 . Find the number of items the firm should manufacture to get maximum profit. Find the maximum profit.


A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.


The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.


An open box with square base is to be made of a given quantity of cardboard of area c2. Show that the maximum volume of the box is `"c"^3/(6sqrt(3))` cubic units


The maximum value of `(1/x)^x` is ______.


Range of projectile will be maximum when angle of projectile is


The maximum value of the function f(x) = `logx/x` is ______.


A function f(x) is maximum at x = a when f'(a) > 0.


A wire of length 36 m is cut into two pieces, one of the pieces is bent to form a square and the other is bent to form a circle. If the sum of the areas of the two figures is minimum, and the circumference of the circle is k (meter), then `(4/π + 1)`k is equal to ______.


If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.


The minimum value of 2sinx + 2cosx is ______.


The minimum value of the function f(x) = xlogx is ______.


A rod AB of length 16 cm. rests between the wall AD and a smooth peg, 1 cm from the wall and makes an angle θ with the horizontal. The value of θ for which the height of G, the midpoint of the rod above the peg is minimum, is ______.


Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.


A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×