English

Determine the minimum value of the function. f(x) = 2x3 – 21x2 + 36x – 20 - Mathematics and Statistics

Advertisements
Advertisements

Question

Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20

Sum

Solution

f(x) = 2x3 – 21x2 + 36x – 20

∴ f'(x) = 6x2 – 42x + 36  and f''(x) = 12x – 42

Consider f '(x) = 0

∴ 6x2 – 42x + 36 = 0

∴ x2 – 7x + 6 = 0

∴ (x – 6)(x – 1) = 0

∴ x – 1 = 0 or x – 6 = 0

∴x = 6 or x = 1   

For x = 6,

f''(6) = 12(6) – 42

= 72 – 42

= 30 > 0

∴ f(x) minimum value at x = 6.

f''(1) = 12 – 42

= –30 < 0

∴ f(x) maximum value at x = 1.

f''(6) = 2(6)3 – 21(6)2 + 36(6) – 20

= 432 – 756 + 216 – 20

= –128

∴ The function f(x) has a minimum value of –128 at x = 6.

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (March) Official

RELATED QUESTIONS

Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3`. Also find maximum volume in terms of volume of the sphere


A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x2


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

g(x) = x3 − 3x


Prove that the following function do not have maxima or minima:

h(x) = x3 + x2 + x + 1


What is the maximum value of the function sin x + cos x?


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.


Solve the following :  A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted.


Divide the number 20 into two parts such that their product is maximum.


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


Divide the number 20 into two parts such that their product is maximum


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.


The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.


If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.


Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______


The function y = 1 + sin x is maximum, when x = ______ 


If the sum of the lengths of the hypotenuse and a side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between them is `pi/3`


Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.


The point on the curve `x^2 = 2y` which is nearest to the point (0, 5) is


Divide 20 into two ports, so that their product is maximum.


Read the following passage and answer the questions given below.

In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of `x^2/a^2 + y^2/b^2` = 1.

  1. If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x.
  2. Find the critical point of the function.
  3. Use First derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.
    OR
    Use Second Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.

Let f: R → R be a function defined by f(x) = (x – 3)n1(x – 5)n2, n1, n2 ∈ N. Then, which of the following is NOT true?


A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.


Divide the number 100 into two parts so that the sum of their squares is minimum.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×