Advertisements
Advertisements
Question
Find the maximum area of an isosceles triangle inscribed in the ellipse `x^2/ a^2 + y^2/b^2 = 1` with its vertex at one end of the major axis.
Solution
Ellipse, `x^2/a^2 + y^2/b^2 = 1`
Let P be a point (a cos θ, b sin θ) on the ellipse. APP' is an isosceles triangle.
PP' intersects the axis AA' of the ellipse at point M.
Area of ∆APP' A = `1/2 PP' xx AM`
`= 1/2 (2 b sin theta) xx (a - a cos theta)` ...[∵ PP' = 2 PM = 2b sin θ and AM = OA - OM = a - a cos θ]
`= 1/2 "ab" xx 2 sin theta (1 - cos theta)`
= ab sin θ (a - a cos θ)
= ab (sin θ - sin θ cos θ)
`= "ab"(sin θ - 1/2 * 2 sin θ cos θ)`
`= "ab" (sin theta - 1/2 sin 2 theta)`
On differentiating with respect to θ,
`(dA)/(d theta) = ab (cos theta - cos 2 theta)`
For highest to lowest, `(dA)/(d theta) = 0`
∴ ab(cos θ - cos 2θ) = 0
⇒ cos 2θ = cos θ
⇒ 2θ = 2π - θ
⇒ θ = `(2pi)/3`
Now, `(d^2A)/(d theta^2) = ab (- sin theta + 2 sin 2 theta)`
At, `theta = (2pi)/3 (d^2A)/(d theta^2) = ab (- sin (2pi)/3 + 2 sin (4pi)/3)`
`= ab [- (sqrt3/2) + 2 (- sqrt3/2)]`
`= ab (- sqrt3/2 - (2sqrt3)/2)`
`= (- 3 sqrt3)/2 ab < 0`
⇒ A is maximum when `theta = (2pi)/3 = 120^circ`
Maximum value of a = `ab (sin 120^circ - 1/2 sin 240^circ)`
`= ab [sqrt3/2 - 1/2 (- sqrt3/2)]`
`= ab(sqrt3/2 + sqrt3/4)`
`= (3sqrt3)/4`ab
APPEARS IN
RELATED QUESTIONS
If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).
If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.
Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2
Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|
Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:
f(x) = x3 − 6x2 + 9x + 15
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
`f(x) =x^3, x in [-2,2]`
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`
At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?
Find two positive numbers x and y such that x + y = 60 and xy3 is maximum.
Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.
A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening
A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.
Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`
A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].
Find the maximum and minimum of the following functions : f(x) = `logx/x`
Choose the correct option from the given alternatives :
If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.
Solve the following:
A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.
Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x
A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.
Solution: Let the dimensions of the rectangle be x cm and y cm.
∴ 2x + 2y = 36
Let f(x) be the area of rectangle in terms of x, then
f(x) = `square`
∴ f'(x) = `square`
∴ f''(x) = `square`
For extreme value, f'(x) = 0, we get
x = `square`
∴ f''`(square)` = – 2 < 0
∴ Area is maximum when x = `square`, y = `square`
∴ Dimensions of rectangle are `square`
If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.
The function y = 1 + sin x is maximum, when x = ______
If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.
The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.
The function `"f"("x") = "x" + 4/"x"` has ____________.
The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.
Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.
The point on the curve `x^2 = 2y` which is nearest to the point (0, 5) is
Let f: R → R be a function defined by f(x) = (x – 3)n1(x – 5)n2, n1, n2 ∈ N. Then, which of the following is NOT true?
Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.
The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by
f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`
The minimum value of 2sinx + 2cosx is ______.
The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.
The minimum value of the function f(x) = xlogx is ______.
If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).
Find the maximum profit that a company can make, if the profit function is given by P(x) = 72 + 42x – x2, where x is the number of units and P is the profit in rupees.
A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.
Divide the number 100 into two parts so that the sum of their squares is minimum.