English

If f'(x)=k(cosx-sinx), f'(0)=3 and f(pi/2)=15, find f'(x). - Mathematics and Statistics

Advertisements
Advertisements

Question

If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).

Sum

Solution

f'(x) = k(cos x - sin x) ….(given)

`f(x)=intf'(x)dx`

`=intk(cosx-sinx)dx`

`=kint(cosx-sinx)dx`

f(x)=k(sinx+cosx)+c .....(i)

f'(0)=3........................(given)

k(cos0-sin0)=3

k(1)=3

k=3.............................(ii)

`also,f(pi/2)=15`

`k[sin(pi/2)+cos(pi/2)]+c=15`

3(1+0)+c=15

c=12

Putting (ii) and (iii) in (i), we get

f(x)=(3sinx+cosx)+12

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (October)

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3. 


Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.


Find the maximum and minimum value, if any, of the following function given by g(x) = − |x + 1| + 3.


Find the maximum and minimum value, if any, of the following function given by f(x) = |sin 4x + 3|


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x2


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = x/2 + 2/x, x > 0`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) =x^3, x in [-2,2]`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = sin x + cos x , x ∈ [0, π]


Find two numbers whose sum is 24 and whose product is as large as possible.


Find two positive numbers x and y such that their sum is 35 and the product x2y5 is a maximum.


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


A rectangular sheet of tin 45 cm by 24 cm is to be made into a box without top, by cutting off square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.


Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.


Find the maximum and minimum of the following functions : y = 5x3 + 2x2 – 3x.


Divide the number 20 into two parts such that sum of their squares is minimum.


The perimeter of a triangle is 10 cm. If one of the side is 4 cm. What are the other two sides of the triangle for its maximum area?


A box with a square base is to have an open top. The surface area of the box is 192 sq cm. What should be its dimensions in order that the volume is largest?


Show that among rectangles of given area, the square has least perimeter.


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius ‘r’ cm.


Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.


Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.


Solve the following :  A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted.


Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.


Determine the maximum and minimum value of the following function.

f(x) = 2x3 – 21x2 + 36x – 20


Determine the maximum and minimum value of the following function.

f(x) = x log x


If f(x) = x.log.x then its maximum value is ______.


The function f(x) = x log x is minimum at x = ______.


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


Divide the number 20 into two parts such that their product is maximum


A rod of 108 m long is bent to form a rectangle. Find it’s dimensions when it’s area is maximum.


A metal wire of 36 cm long is bent to form a rectangle. By completing the following activity, find it’s dimensions when it’s area is maximum.

Solution: Let the dimensions of the rectangle be x cm and y cm.

∴ 2x + 2y = 36

Let f(x) be the area of rectangle in terms of x, then

f(x) = `square`

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme value, f'(x) = 0, we get

x = `square`

∴ f''`(square)` = – 2 < 0

∴ Area is maximum when x = `square`, y = `square`

∴ Dimensions of rectangle are `square`


If f(x) = px5 + qx4 + 5x3 - 10 has local maximum and minimum at x = 1 and x = 3 respectively then (p, q) = ______.


The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.


If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.


Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______


The function y = 1 + sin x is maximum, when x = ______ 


The minimum value of the function f(x) = 13 - 14x + 9x2 is ______


Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is ______.


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is ____________.


The coordinates of the point on the parabola y2 = 8x which is at minimum distance from the circle x2 + (y + 6)2 = 1 are ____________.


The function `"f"("x") = "x" + 4/"x"` has ____________.


The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.


Range of projectile will be maximum when angle of projectile is


The function `f(x) = x^3 - 6x^2 + 9x + 25` has


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


Read the following passage and answer the questions given below.

In an elliptical sport field the authority wants to design a rectangular soccer field with the maximum possible area. The sport field is given by the graph of `x^2/a^2 + y^2/b^2` = 1.

  1. If the length and the breadth of the rectangular field be 2x and 2y respectively, then find the area function in terms of x.
  2. Find the critical point of the function.
  3. Use First derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.
    OR
    Use Second Derivative Test to find the length 2x and width 2y of the soccer field (in terms of a and b) that maximize its area.

Let P(h, k) be a point on the curve y = x2 + 7x + 2, nearest to the line, y = 3x – 3. Then the equation of the normal to the curve at P is ______.


If p(x) be a polynomial of degree three that has a local maximum value 8 at x = 1 and a local minimum value 4 at x = 2; then p(0) is equal to ______.


Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


Sum of two numbers is 5. If the sum of the cubes of these numbers is least, then find the sum of the squares of these numbers.


If Mr. Rane order x chairs at the price p = (2x2 - 12x - 192) per chair. How many chairs should he order so that the cost of deal is minimum?

Solution: Let Mr. Rane order x chairs.

Then the total price of x chairs = p·x = (2x2 - 12x- 192)x

= 2x3 - 12x2 - 192x

Let f(x) = 2x3 - 12x2 - 192x

∴ f'(x) = `square` and f''(x) = `square`

f'(x ) = 0 gives x = `square` and f''(8) = `square` > 0

∴ f is minimum when x = 8

Hence, Mr. Rane should order 8 chairs for minimum cost of deal.


Find the maximum and the minimum values of the function f(x) = x2ex.


A running track of 440 m is to be laid out enclosing a football field. The football field is in the shape of a rectangle with a semi-circle at each end. If the area of the rectangular portion is to be maximum,then find the length of its sides. Also calculate the area of the football field.


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


A box with a square base is to have an open top. The surface area of box is 147 sq. cm. What should be its dimensions in order that the volume is largest?


Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×