English

Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3. - Mathematics

Advertisements
Advertisements

Question

Find the maximum and minimum value, if any, of the following function given by f(x) = (2x − 1)2 + 3. 

Sum

Solution

We have, f(x) = (2x - 1)2 + 3 for all x ∈ R.

Since, (2x - 1)2 ≥ 0

= (2x - 1)2 + 3 ≥ 3

∴ Minimum f (x) = 3, which occurs when 2x - 1 = 0 i.e, when x = `1/2`

Value of f (x) has no maximum value, because f (x) → ∞ as |x| → ∞

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.5 [Page 231]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.5 | Q 1.1 | Page 231

RELATED QUESTIONS

Examine the maxima and minima of the function f(x) = 2x3 - 21x2 + 36x - 20 . Also, find the maximum and minimum values of f(x). 


Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.`  Also, find the maximum volume.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`h(x) = sinx + cosx, 0 < x < pi/2`


Find the local maxima and local minima, if any, of the following functions. Find also the local maximum and the local minimum values, as the case may be:

`f(x) = xsqrt(1-x), x > 0`


Prove that the following function do not have maxima or minima:

f(x) = ex


At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?


It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.


Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`


Prove that the semi-vertical angle of the right circular cone of given volume and least curved surface is \[\cot^{- 1} \left( \sqrt{2} \right)\] .


Show that a cylinder of a given volume, which is open at the top, has minimum total surface area when its height is equal to the radius of its base.


 A rod of 108 meters long is bent to form a rectangle. Find its dimensions if the area is maximum. Let x be the length and y be the breadth of the rectangle. 


A wire of length 36 metres is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum.


Show that among rectangles of given area, the square has least perimeter.


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


Determine the maximum and minimum value of the following function.

f(x) = x log x


The function f(x) = x log x is minimum at x = ______.


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.


The function y = 1 + sin x is maximum, when x = ______ 


The maximum and minimum values for the function f(x) = 4x3 - 6x2 on [-1, 2] are ______


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


The maximum value of sin x . cos x is ______.


Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


Find the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a.


Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


The greatest value of the function f(x) = `tan^-1x - 1/2logx` in `[1/sqrt(3), sqrt(3)]` is ______.


The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.


A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.


Read the following passage:

Engine displacement is the measure of the cylinder volume swept by all the pistons of a piston engine. The piston moves inside the cylinder bore.

One complete of a four-cylinder four-stroke engine. The volume displace is marked
The cylinder bore in the form of circular cylinder open at the top is to be made from a metal sheet of area 75π cm2.

Based on the above information, answer the following questions:

  1. If the radius of cylinder is r cm and height is h cm, then write the volume V of cylinder in terms of radius r. (1)
  2. Find `(dV)/(dr)`. (1)
  3. (a) Find the radius of cylinder when its volume is maximum. (2)
    OR
    (b) For maximum volume, h > r. State true or false and justify. (2)

Check whether the function f : R `rightarrow` R defined by f(x) = x3 + x, has any critical point/s or not ? If yes, then find the point/s.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×