English

Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is R2R3. Also, find the maximum volume. - Mathematics and Statistics

Advertisements
Advertisements

Question

Solve the following : Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is `(2"R")/sqrt(3)`. Also, find the maximum volume.

Sum

Solution

Let R be the radius and h be the height of the cylinder which is inscribed in a sphere of radius r cm.

Then from the figure,

`"R"^2 + (h/2)^2` = r2

∴ R2  = `r^2 - h^2/(4)`   ...(1)

Let V be the volume of the cylinder.
Then V = πR2h

= `pi(r^2 - h^2/(4))h`   ...[By (1)]

= `pi(r^2 - h^3/(4))`

∴ `"dV"/"dh" = pid/"dh"(r^2h - h^3/(4))`

= `pi(r^2 xx 1 - 1/4 xx 3h^2)`

= `pi(r^2 - 3/4h^2)`
and
`(d^2V)/("dh"^2) = pid/"dh"(r^2 - 3/4h^2)`

= `pi(0 - 3/4 xx 2h)`

= `-(3)/(2)pih`

Now, `"dV"/"dh" = 0  "gives", pi(r^2 - 3/4h^2)` = 0

∴ `r^2 - 3/4h^2` = 0

∴ `(3)/(4)h^2` = r

∴ h2 = `(4r^2)/(3)`

∴ h = `(2r)/sqrt(3)`          ...[∵ h > 0]
and
`((d^2V)/(dh^2))_("at"  h = (2r)/sqrt(3)`

= `-(3)/(2)pi xx (2r)/sqrt(3) < 0`

∴ V is maximum at h = `(2r)/sqrt(3)`

If h = `(2r)/sqrt(3)`, then from (1)

R2 = `r^2 - (1)/(4) xx (4r^2)/(3) = (2r^2)/(3)`

∴ volumeof the largest cylinder

= `pi xx (2r^2)/(3) xx (2r)/sqrt(3) = (4pir^3)/(3sqrt(3)`cu cm.

Hence, the volume of the largest cylinder inscribed in a sphere of radius 'r' cm = `(4R^3)/(3sqrt(3)`cu cm.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Applications of Derivatives - Miscellaneous Exercise 2 [Page 94]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 2 Applications of Derivatives
Miscellaneous Exercise 2 | Q 20 | Page 94

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

An open box is to be made out of a piece of a square card board of sides 18 cms by cutting off equal squares from the comers and turning up the sides. Find the maximum volume of the box.


If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that area of triangle is maximum, when the angle between them is π/3.


A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.


Find the maximum and minimum value, if any, of the following function given by f(x) = 9x2 + 12x + 2


Find the maximum and minimum value, if any, of the following function given by h(x) = sin(2x) + 5.


Find the maximum and minimum value, if any, of the following function given by h(x) = x + 1, x ∈ (−1, 1)


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = sinx − cos x, 0 < x < 2π


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) = x3 − 6x2 + 9x + 15


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = 1/(x^2 + 2)`


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

`f(x) = 4x - 1/x x^2, x in [-2 ,9/2]`


What is the maximum value of the function sin x + cos x?


Find two positive numbers whose sum is 16 and the sum of whose cubes is minimum.


Prove that the volume of the largest cone that can be inscribed in a sphere of radius R is `8/27` of the volume of the sphere.


Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `tan^(-1) sqrt(2)`


The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.


A window is in the form of a rectangle surmounted by a semicircular opening. The total perimeter of the window is 10 m. Find the dimensions of the window to admit maximum light through the whole opening


A point on the hypotenuse of a triangle is at distance a and b from the sides of the triangle.

Show that the minimum length of the hypotenuse is `(a^(2/3) + b^(2/3))^(3/2).`


Find the absolute maximum and minimum values of the function f given by f (x) = cos2 x + sin x, x ∈ [0, π].


Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.


 The volume of a closed rectangular metal box with a square base is 4096 cm3. The cost of polishing the outer surface of the box is Rs. 4 per cm2. Find the dimensions of the box for the minimum cost of polishing it. 


Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base. 


Find the maximum and minimum of the following functions : f(x) = `x^2 + (16)/x^2`


Show that among rectangles of given area, the square has least perimeter.


Choose the correct option from the given alternatives : 

If f(x) = `(x^2 - 1)/(x^2 + 1)`, for every real x, then the minimum value of f is ______.


Solve the following : An open box with a square base is to be made out of given quantity of sheet of area a2. Show that the maximum volume of the box is `a^3/(6sqrt(3)`.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


Determine the maximum and minimum value of the following function.

f(x) = 2x3 – 21x2 + 36x – 20


Divide the number 20 into two parts such that their product is maximum.


The total cost of producing x units is ₹ (x2 + 60x + 50) and the price is ₹ (180 − x) per unit. For what units is the profit maximum?


If f(x) = x.log.x then its maximum value is ______.


State whether the following statement is True or False:

An absolute maximum must occur at a critical point or at an end point.


Find the local maximum and local minimum value of  f(x) = x3 − 3x2 − 24x + 5


A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum


A rectangular sheet of paper has it area 24 sq. Meters. The margin at the top and the bottom are 75 cm each and the sides 50 cm each. What are the dimensions of the paper if the area of the printed space is maximum?


Divide the number 20 into two parts such that their product is maximum


By completing the following activity, examine the function f(x) = x3 – 9x2 + 24x for maxima and minima

Solution: f(x) = x3 – 9x2 + 24x

∴ f'(x) = `square`

∴ f''(x) = `square`

For extreme values, f'(x) = 0, we get

x = `square` or `square`

∴ f''`(square)` = – 6 < 0

∴ f(x) is maximum at x = 2.

∴ Maximum value = `square`

∴ f''`(square)` = 6 > 0

∴ f(x) is maximum at x = 4.

∴ Minimum value = `square`


The maximum volume of a right circular cylinder if the sum of its radius and height is 6 m is ______.


The minimum value of Z = 5x + 8y subject to x + y ≥ 5, 0 ≤ x ≤ 4, y ≥ 2, x ≥ 0, y ≥ 0 is ____________.


If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.


If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.


Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______


The two parts of 120 for which the sum of double of first and square of second part is minimum, are ______.


Find all the points of local maxima and local minima of the function f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105`


A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5/cm2 and the material for the sides costs Rs 2.50/cm2. Find the least cost of the box.


If x is real, the minimum value of x2 – 8x + 17 is ______.


The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is ______.


The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.


The maximum value of sin x . cos x is ______.


The maximum value of `(1/x)^x` is ______.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


Find the maximum profit that a company can make, if the profit function is given by P(x) = 41 + 24x – 18x2.


For all real values of `x`, the minimum value of `(1 - x + x^2)/(1 + x + x^2)`


A function f(x) is maximum at x = a when f'(a) > 0.


The range of a ∈ R for which the function f(x) = `(4a - 3)(x + log_e5) + 2(a - 7)cot(x/2)sin^2(x/2), x ≠ 2nπ, n∈N` has critical points, is ______.


If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.


If y = alog|x| + bx2 + x has its extremum values at x = –1 and x = 2, then ______.


Let x and y be real numbers satisfying the equation x2 – 4x + y2 + 3 = 0. If the maximum and minimum values of x2 + y2 are a and b respectively. Then the numerical value of a – b is ______.


The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by

f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`


The maximum distance from origin of a point on the curve x = `a sin t - b sin((at)/b)`, y = `a cos t - b cos((at)/b)`, both a, b > 0 is ______.


A rectangle with one side lying along the x-axis is to be inscribed in the closed region of the xy plane bounded by the lines y = 0, y = 3x and y = 30 – 2x. The largest area of such a rectangle is ______.


The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.


A rod AB of length 16 cm. rests between the wall AD and a smooth peg, 1 cm from the wall and makes an angle θ with the horizontal. The value of θ for which the height of G, the midpoint of the rod above the peg is minimum, is ______.


If f(x) = `1/(4x^2 + 2x + 1); x ∈ R`, then find the maximum value of f(x).


A metal wire of 36 cm long is bent to form a rectangle. Find its dimensions when its area is maximum.


If Mr. Rane order x chairs at the price p = (2x2 - 12x - 192) per chair. How many chairs should he order so that the cost of deal is minimum?

Solution: Let Mr. Rane order x chairs.

Then the total price of x chairs = p·x = (2x2 - 12x- 192)x

= 2x3 - 12x2 - 192x

Let f(x) = 2x3 - 12x2 - 192x

∴ f'(x) = `square` and f''(x) = `square`

f'(x ) = 0 gives x = `square` and f''(8) = `square` > 0

∴ f is minimum when x = 8

Hence, Mr. Rane should order 8 chairs for minimum cost of deal.


Find the maximum and the minimum values of the function f(x) = x2ex.


Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).


Determine the minimum value of the function.

f(x) = 2x3 – 21x2 + 36x – 20


Mrs. Roy designs a window in her son’s study room so that the room gets maximum sunlight. She designs the window in the shape of a rectangle surmounted by an equilateral triangle. If the perimeter of the window is 12 m, find the dimensions of the window that will admit maximum sunlight into the room.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×