English

The maximum value of [x(x−1)+1]13 , 0 ≤ x ≤ 1 is ______. - Mathematics

Advertisements
Advertisements

Question

The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is ______.

Options

  • `(1/3)^(1/3)`

  • `1/2`

  • 1

  • 0

MCQ
Fill in the Blanks

Solution

The maximum value of `[x(x −1) +1]^(1/3)` , 0 ≤ x ≤ 1 is 1.

Explanation:

Let, `y = [x (x – 1) + 1]^(1/3)`

Differentiating both sides with respect to x,

`dy/dx = 1/3 [x (x - 1) + 1]^(-2/3) d/dx [x(x - 1) + 1]`

`= 1/3 [x (x - 1) + 1]^(-2/3) × (2x - 1)`

`= (2x - 1)/(3 [x (x - 1) + 1]^(2/3))`

For highest and lowest value, `dy/dx = 0 => 2x - 1 = 0 => x = 1/2`

For highest and lowest value, `dy/dx = 0 => 2x - 1 = 0 => x = 1/2`

At `x= 0, f(0) = 1^(1/3) = 1`

At `x= 1, f(1) = 1^(1/3) = 1`

x `= 1/2  at,  f(1/2) = [1/2 (-1/2) xx 1]^(1/3) = (3/4)^(1/3)`

`dy/dx , at  x = 1/2` sign is changing from -ve to +ve

∴ y is minimum at x = `1/2`.

maximum value = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.5 [Page 234]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.5 | Q 29 | Page 234

RELATED QUESTIONS

If `f'(x)=k(cosx-sinx), f'(0)=3 " and " f(pi/2)=15`, find f(x).


Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.


Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.


Prove that the following function do not have maxima or minima:

f(x) = ex


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = (x −1)2 + 3, x ∈[−3, 1]


At what points in the interval [0, 2π], does the function sin 2x attain its maximum value?


Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.


Show that the right circular cone of least curved surface and given volume has an altitude equal to `sqrt2` time the radius of the base.


Show that semi-vertical angle of right circular cone of given surface area and maximum volume is  `Sin^(-1) (1/3).`


The point on the curve x2 = 2y which is nearest to the point (0, 5) is ______.


Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to \[ \frac{2}{3} \] of the diameter of the sphere.


Find the maximum and minimum of the following functions : f(x) = x log x


An open cylindrical tank whose base is a circle is to be constructed of metal sheet so as to contain a volume of `pia^3`cu cm of water. Find the dimensions so that the quantity of the metal sheet required is minimum.


Show that among rectangles of given area, the square has least perimeter.


Show that the height of a closed right circular cylinder of given volume and least surface area is equal to its diameter.


Solve the following : Show that the height of a right circular cylinder of greatest volume that can be inscribed in a right circular cone is one-third of that of the cone.


Examine the function for maxima and minima f(x) = x3 - 9x2 + 24x


Divide the number 20 into two parts such that their product is maximum


If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.


If f(x) = `x + 1/x, x ne 0`, then local maximum and x minimum values of function f are respectively.


Twenty meters of wire is available for fencing off a flowerbed in the form of a circular sector. Then the maximum area (in sq. m) of the flower-bed, is ______


The sum of two non-zero numbers is 6. The minimum value of the sum of their reciprocals is ______.


Find the points of local maxima, local minima and the points of inflection of the function f(x) = x5 – 5x4 + 5x3 – 1. Also find the corresponding local maximum and local minimum values.


If x is real, the minimum value of x2 – 8x + 17 is ______.


Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.


The maximum value of `(1/x)^x` is ______.


The curves y = 4x2 + 2x – 8 and y = x3 – x + 13 touch each other at the point ______.


The maximum value of `["x"("x" − 1) + 1]^(1/3)`, 0 ≤ x ≤ 1 is:


Find both the maximum and minimum values respectively of 3x4 - 8x3 + 12x2 - 48x + 1 on the interval [1, 4].


Find the volume of the largest cylinder that can be inscribed in a sphere of radius r cm.


The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.


Read the following passage and answer the questions given below.


The temperature of a person during an intestinal illness is given by f(x) = 0.1x2 + mx + 98.6, 0 ≤ x ≤ 12, m being a constant, where f(x) is the temperature in °F at x days.

  1. Is the function differentiable in the interval (0, 12)? Justify your answer.
  2. If 6 is the critical point of the function, then find the value of the constant m.
  3. Find the intervals in which the function is strictly increasing/strictly decreasing.
    OR
    Find the points of local maximum/local minimum, if any, in the interval (0, 12) as well as the points of absolute maximum/absolute minimum in the interval [0, 12]. Also, find the corresponding local maximum/local minimum and the absolute ‘maximum/absolute minimum values of the function.

A wire of length 22 m is to be cut into two pieces. One of the pieces is to be made into a square and the other into an equilateral triangle. Then, the length of the side of the equilateral triangle, so that the combined area of the square and the equilateral triangle is minimum, is ______.


The minimum value of α for which the equation `4/sinx + 1/(1 - sinx)` = α has at least one solution in `(0, π/2)` is ______.


Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.


The volume of the greatest cylinder which can be inscribed in a cone of height 30 cm and semi-vertical angle 30° is ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


If x + y = 8, then the maximum value of x2y is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×