English

State whether the following statement is True or False: An absolute maximum must occur at a critical point or at an end point. - Mathematics and Statistics

Advertisements
Advertisements

Question

State whether the following statement is True or False:

An absolute maximum must occur at a critical point or at an end point.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is True.

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Applications of Derivatives - Miscellaneous Exercise 4 [Page 114]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
Chapter 4 Applications of Derivatives
Miscellaneous Exercise 4 | Q 3.3 | Page 114

RELATED QUESTIONS

Find the maximum and minimum value, if any, of the following function given by f(x) = −(x − 1)2 + 10 


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

g(x) = x3 − 3x


Find the absolute maximum value and the absolute minimum value of the following function in the given interval:

f (x) = (x −1)2 + 3, x ∈[−3, 1]


Find the maximum profit that a company can make, if the profit function is given by p(x) = 41 − 72x − 18x2.


Show that the right circular cylinder of given surface and maximum volume is such that is heights is equal to the diameter of the base.


Show that semi-vertical angle of right circular cone of given surface area and maximum volume is  `Sin^(-1) (1/3).`


Show that the altitude of the right circular cone of maximum volume that can be inscribed in a sphere of radius r is `(4r)/3.`


Find the maximum and minimum of the following functions : f(x) = `logx/x`


Solve the following :  A window is in the form of a rectangle surmounted by a semicircle. If the perimeter be 30 m, find the dimensions so that the greatest possible amount of light may be admitted.


Solve the following:

A rectangular sheet of paper of fixed perimeter with the sides having their lengths in the ratio 8 : 15 converted into an open rectangular box by folding after removing the squares of equal area from all corners. If the total area of the removed squares is 100, the resulting box has maximum volume. Find the lengths of the rectangular sheet of paper.


Determine the maximum and minimum value of the following function.

f(x) = 2x3 – 21x2 + 36x – 20


The maximum value of function x3 - 15x2 + 72x + 19 in the interval [1, 10] is ______.


Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`


If y `= "ax - b"/(("x" - 1)("x" - 4))` has a turning point P(2, -1), then find the value of a and b respectively.


A function f(x) is maximum at x = a when f'(a) > 0.


The maximum value of z = 6x + 8y subject to constraints 2x + y ≤ 30, x + 2y ≤ 24 and x ≥ 0, y ≥ 0 is ______.


The maximum value of f(x) = `logx/x (x ≠ 0, x ≠ 1)` is ______.


Find two numbers whose sum is 15 and when the square of one number multiplied by the cube of the other is maximum.


Divide the number 100 into two parts so that the sum of their squares is minimum.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

f(x) `= x sqrt(1 - x), 0 < x < 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×