Advertisements
Advertisements
Question
Discuss the continuity of the function
`f(x)=(1-sinx)/(pi/2-x)^2, `
= 3, for x=π/2
Solution
`f(pi/2)=3 ......(given)`
`lim_(x->pi/2)f(x)=lim_(x->pi/2)(1-sinx)/(pi/2-x)`
`put pi/2-x=h then x=pi/2-h`
`As x->pi/2,h->0`
`lim_(h->0)(1-sin(pi/2-h))/h^2=lim_(h->0)(1-cosh)/h^2`
`=lim_(h->0)(1-cosh)/h^2xx(1+cosh)/(1+cosh)=lim_(h->0)(1-cos^2h)/(h^2(1+cosh))`
`=lim_(h->0)(sin^2h)/(h^2(1+cosh))=lim_(h->0)((sinh)/h)^2(1/(1+cosh))=1xx1/(1+1)`
`=lim_(x->pi/2)f(x)!=f(pi/2)`
f(x) is discontinuous at `x =pi/2`
APPEARS IN
RELATED QUESTIONS
Examine the continuity of the following function at given point:
`f(x)=(logx-log8)/(x-8) , `
` =8, `
Given f (x) = 2x, x < 0
= 0, x ≥ 0
then f (x) is _______ .
If f(x) = `|x|/x`, for x ≠ 0
= 1, for x = 0, then the function is ______.
The function f(x) = `(x + 1)/(9x + x^3)` is.
The points of discontinuity of the function
f(x) = `1/(x - 1)` if 0 ≤ x ≤ 2
= `(x + 5)/(x + 3) if 2 < x ≤ 4` in its domain are.