Advertisements
Advertisements
Question
A telephone company in a town has 500 subscribers on its list and collects fixed charges of Rs 300/- per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of Re 1/- one subscriber will discontinue the service. Find what increase will bring maximum profit?
Solution
Let us consider that the company increases the annual subscription by ₹ x.
So, x is the number of subscribers who discontinue the services.
∴ Total revenue, R(x) = (500 – x)(300 + x)
= 150000 + 500x – 300x – x2
= – x2 + 200x + 150000
Differentiating both sides w.r.t. x,
We get R'(x) = – 2x + 200
For local maxima and local minima, R'(x) = 0
– 2x + 200 = 0
⇒ x = 100
R"(x) = – 2 < 0 Maxima
So, R(x) is maximum at x = 100
Hence, in order to get maximum profit, the company should increase its annual subscription by ₹ 100.
APPEARS IN
RELATED QUESTIONS
Find the maximum and minimum value, if any, of the following function given by g(x) = x3 + 1.
Find the maximum and minimum value, if any, of the function given by f(x) = |x + 2| − 1.
Prove that the following function do not have maxima or minima:
f(x) = ex
Find the absolute maximum value and the absolute minimum value of the following function in the given interval:
f (x) = (x −1)2 + 3, x ∈[−3, 1]
It is given that at x = 1, the function x4− 62x2 + ax + 9 attains its maximum value, on the interval [0, 2]. Find the value of a.
Find the maximum and minimum values of x + sin 2x on [0, 2π].
Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.
A metal box with a square base and vertical sides is to contain 1024 cm3. The material for the top and bottom costs Rs 5 per cm2 and the material for the sides costs Rs 2.50 per cm2. Find the least cost of the box
A rectangle is inscribed in a semicircle of radius r with one of its sides on the diameter of the semicircle. Find the dimensions of the rectangle to get the maximum area. Also, find the maximum area.
Solve the following : Show that of all rectangles inscribed in a given circle, the square has the maximum area.
Find the local maximum and local minimum value of f(x) = x3 − 3x2 − 24x + 5
If z = ax + by; a, b > 0 subject to x ≤ 2, y ≤ 2, x + y ≥ 3, x ≥ 0, y ≥ 0 has minimum value at (2, 1) only, then ______.
The function y = 1 + sin x is maximum, when x = ______
If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?
The smallest value of the polynomial x3 – 18x2 + 96x in [0, 9] is ______.
The function f(x) = 2x3 – 3x2 – 12x + 4, has ______.
Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.
Find the points of local maxima and local minima respectively for the function f(x) = sin 2x - x, where `-pi/2 le "x" le pi/2`
If y = x3 + x2 + x + 1, then y ____________.
The area of a right-angled triangle of the given hypotenuse is maximum when the triangle is ____________.
The maximum value of the function f(x) = `logx/x` is ______.
Let f: R → R be a function defined by f(x) = (x – 3)n1(x – 5)n2, n1, n2 ∈ N. Then, which of the following is NOT true?
If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.
Let f(x) = |(x – 1)(x2 – 2x – 3)| + x – 3, x ∈ R. If m and M are respectively the number of points of local minimum and local maximum of f in the interval (0, 4), then m + M is equal to ______.
The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by
f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`
A straight line is drawn through the point P(3, 4) meeting the positive direction of coordinate axes at the points A and B. If O is the origin, then minimum area of ΔOAB is equal to ______.
The point in the interval [0, 2π], where f(x) = ex sin x has maximum slope, is ______.
Find the point on the curve y2 = 4x, which is nearest to the point (2, 1).