मराठी

Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is ______.

पर्याय

  • 0

  • 12

  • 16

  • 32

MCQ
रिकाम्या जागा भरा

उत्तर

Maximum slope of the curve y = –x3 + 3x2 + 9x – 27 is 12.

Explanation:

Given that y = –x3 + 3x2 + 9x – 27

`"dy"/'dx"` = – 3x2 + 6x + 9

∴ Slope of the given curve,

m = – 3x2 + 6x + 9   ....`("dy"/"dx" = "m")`

`"dm"/"dx"` = –6x + 6

For local maxima and local minima, `"dm"/"dx"` = 0

∴ – 6x + 6 = 0

⇒ x = 1

Now `("d"^2"m")/("dx"^2)` = = – 6 < 0 maxima

∴ Maximum value of the slope at x = 1 is

`"m"_(x = 1)` = – 3(1)2 + 6(1) + 9

= – 3 + 6 + 9

= 12

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १४१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 57 | पृष्ठ १४१

व्हिडिओ ट्यूटोरियलVIEW ALL [5]

संबंधित प्रश्‍न

Find the approximate value of cos (89°, 30'). [Given is: 1° = 0.0175°C]


Show that the height of the cylinder of maximum volume, that can be inscribed in a sphere of radius R is `(2R)/sqrt3.`  Also, find the maximum volume.


A telephone company in a town has 5000 subscribers on its list and collects fixed rent charges of Rs.3,000 per year from each subscriber. The company proposes to increase annual rent and it is believed that for every increase of one rupee in the rent, one subscriber will be discontinued. Find what increased annual rent will bring the maximum annual income to the company.


Find the local maxima and local minima, if any, of the following function. Find also the local maximum and the local minimum values, as the case may be:

`g(x) = x/2 + 2/x, x > 0`


Find both the maximum value and the minimum value of 3x4 − 8x3 + 12x2 − 48x + 25 on the interval [0, 3].


A square piece of tin of side 18 cm is to made into a box without a top  by cutting a square from each corner and folding up the flaps to form the box. What should be the side of the square to be cut off so that the volume of the box is the maximum possible?


Show that of all the rectangles inscribed in a given fixed circle, the square has the maximum area.


A given quantity of metal is to be cast into a half cylinder with a rectangular base and semicircular ends. Show that in order that the total surface area may be minimum the ratio of the length of the cylinder to the diameter of its semi-circular ends is \[\pi : (\pi + 2)\].


Divide the number 30 into two parts such that their product is maximum.


Divide the number 20 into two parts such that sum of their squares is minimum.


Solve the following:

A wire of length l is cut into two parts. One part is bent into a circle and the other into a square. Show that the sum of the areas of the circle and the square is the least, if the radius of the circle is half of the side of the square.


A metal wire of 36cm long is bent to form a rectangle. Find it's dimensions when it's area is maximum.


If f(x) = x.log.x then its maximum value is ______.


State whether the following statement is True or False:

An absolute maximum must occur at a critical point or at an end point.


The function f(x) = x log x is minimum at x = ______.


A wire of length 120 cm is bent in the form of a rectangle. Find its dimensions if the area of the rectangle is maximum


If R is the circum radius of Δ ABC, then A(Δ ABC) = ______.


The minimum value of the function f(x) = 13 - 14x + 9x2 is ______


The combined resistance R of two resistors R1 and R2 (R1, R2 > 0) is given by `1/"R" = 1/"R"_1 + 1/"R"_2`. If R1 + R2 = C (a constant), then maximum resistance R is obtained if ____________.


Let f(x) = 1 + 2x2 + 22x4 + …… + 210x20. Then f (x) has ____________.


Let A = [aij] be a 3 × 3 matrix, where

aij = `{{:(1, "," if "i" = "j"),(-x, "," if |"i" - "j"| = 1),(2x + 1, ","    "otherwise"):}` 

Let a function f: R→R be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on R is equal to ______.


If the function y = `(ax + b)/((x - 4)(x - 1))` has an extremum at P(2, –1), then the values of a and b are ______.


If the point (1, 3) serves as the point of inflection of the curve y = ax3 + bx2 then the value of 'a ' and 'b' are ______.


The function g(x) = `(f(x))/x`, x ≠ 0 has an extreme value when ______.


Let f(x) = (x – a)ng(x) , where g(n)(a) ≠ 0; n = 0, 1, 2, 3.... then ______.


The set of values of p for which the points of extremum of the function f(x) = x3 – 3px2 + 3(p2 – 1)x + 1 lie in the interval (–2, 4), is ______.


The sum of all the local minimum values of the twice differentiable function f : R `rightarrow` R defined by

f(x) = `x^3 - 3x^2 - (3f^('')(2))/2 x + f^('')(1)`


The rectangle has area of 50 cm2. Complete the following activity to find its dimensions for least perimeter.

Solution: Let x cm and y cm be the length and breadth of a rectangle.

Then its area is xy = 50

∴ `y =50/x`

Perimeter of rectangle `=2(x+y)=2(x+50/x)`

Let f(x) `=2(x+50/x)`

Then f'(x) = `square` and f''(x) = `square`

Now,f'(x) = 0, if x = `square`

But x is not negative.

∴ `x = root(5)(2)   "and" f^('')(root(5)(2))=square>0`

∴ by the second derivative test f is minimum at x = `root(5)(2)`

When x = `root(5)(2),y=50/root(5)(2)=root(5)(2)`

∴ `x=root(5)(2)  "cm" , y = root(5)(2)  "cm"`

Hence, rectangle is a square of side `root(5)(2)  "cm"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×