Advertisements
Advertisements
प्रश्न
f(x) = xx has a stationary point at ______.
पर्याय
x = e
x = `1/"e"`
x = 1
x = `sqrt("e")`
उत्तर
f(x) = xx has a stationary point at x = `1/"e"`.
Explanation:
We have f(x) = xx
Taking log of both sides, we have
log f(x) = x log x
Differentiating both sides w.r.t. x, we get
`1/("f"(x)) * "f'"(x) = x * 1/x + log x * 1`
⇒ f'(x) = f(x)[1 + log x] = xx[1 + log x]
To find stationary point, f'(x) = 0
∴ xx[1 + log x] = 0
xx ≠ 0 ∴ 1 + log x = 0
⇒ log x = – 1
⇒ x = e–1
⇒ x = `1/"e"`
APPEARS IN
संबंधित प्रश्न
Show that the semi-vertical angle of the cone of the maximum volume and of given slant height is `cos^(-1)(1/sqrt3)`
Differentiate the following functions from first principles e3x.
Differentiate the following functions from first principles \[e^\sqrt{2x}\].
Differentiate tan (x° + 45°) ?
Differentiate sin (log x) ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = \sqrt{a^2 - x^2}\] prove that \[y\frac{dy}{dx} + x = 0\] ?
If \[\sin^2 y + \cos xy = k,\] find \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\]
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
Find the second order derivatives of the following function tan−1 x ?
If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?