Advertisements
Advertisements
प्रश्न
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
उत्तर
\[\frac{dy}{dx}\left\{ xy \log\left( x + y \right) \right\} = \frac{d}{dx}\left( 1 \right)\]
\[ \Rightarrow xy\frac{d}{dx}\log\left( x + y \right) + x \log\left( x + y \right)\frac{dy}{dx} + y \log\left( x + y \right)\frac{d}{dx}\left( x \right) = 0\]
\[ \Rightarrow \frac{xy}{\left( x + y \right)}\left( 1 + \frac{dy}{dx} \right) + x\log\left( x + y \right)\frac{dy}{dx} + y \log\left( x + y \right)\left( 1 \right) = 0\]
\[ \Rightarrow \frac{xy}{\left( x + y \right)}\left( 1 + \frac{dy}{dx} \right) + x\log\left( x + y \right)\frac{dy}{dx} + y \log\left( x + y \right) = 0\]
\[ \Rightarrow \frac{xy}{\left( x + y \right)}\frac{dy}{dx} + \frac{xy}{\left( x + y \right)} + x\left( \frac{1}{xy} \right)\frac{dy}{dx} + y\left( \frac{1}{xy} \right) = 0 \left[ \text{ Using equation} \left( i \right) \right]\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{xy}{x + y} + \frac{1}{y} \right] = - \left[ \frac{1}{x} + \frac{xy}{x + y} \right]\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{x y^2 + x + y}{\left( x + y \right)y} \right] = - \left[ \frac{x + y + x^2 y}{x\left( x + y \right)} \right]\]
\[ \Rightarrow \frac{dy}{dx} = - \frac{y}{x}\left( \frac{x + y + x^2 y}{x + y + x y^2} \right)\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e−x.
Differentiate `2^(x^3)` ?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[\cos \left( \log x \right)^2\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
If \[y = \cos^{- 1} \left\{ \frac{2x - 3 \sqrt{1 - x^2}}{\sqrt{13}} \right\}, \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?
Differentiate x2 with respect to x3
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( - \frac{1}{2}, - \frac{1}{2 \sqrt{2}} \right)\] ?
If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?
If f (x) is an even function, then write whether `f' (x)` is even or odd ?
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\] then `f' (x)` is equal to ____________ .
If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .
If \[y = \log \left( \frac{1 - x^2}{1 + x^2} \right), \text { then } \frac{dy}{dx} =\] __________ .
If \[y = \tan^{- 1} \left( \frac{\sin x + \cos x}{\cos x - \sin x} \right), \text { then } \frac{dy}{dx}\] is equal to ___________ .
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
\[\text { Find A and B so that y = A } \sin3x + B \cos3x \text { satisfies the equation }\]
\[\frac{d^2 y}{d x^2} + 4\frac{d y}{d x} + 3y = 10 \cos3x \] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is