Advertisements
Advertisements
प्रश्न
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
उत्तर
\[\text{ We have, y } = \frac{e^{ax} \sec x \log x}{\sqrt{1 - 2x}} . . . \left( i \right)\]
\[ \Rightarrow y = \frac{e^{ax} \sec x \log x}{\left( 1 - 2x \right)^\frac{1}{2}}\]
Taking log on both sides
\[\log y = \log e^{ax} + logsec x + \log \log x - \frac{1}{2}\log\left( 1 - 2x \right) \]
\[ \Rightarrow \log y = ax + \log\left( \sec x \right) + \log\left( \log x \right) - \frac{1}{2}\log\left( 1 - 2x \right) \]
Differentiating with respect to x using chain rule,
\[\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\left( ax \right) + \frac{d}{dx}\left( \log \sec x \right) + \frac{d}{dx}\left( \log \log x \right) - \frac{1}{2}\log\left( 1 - 2x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = a + \frac{1}{\sec x}\frac{d}{dx}\left( \sec x \right) + \frac{1}{\log x}\frac{d}{dx}\left( \log x \right) - \frac{1}{2}\left( \frac{1}{1 - 2x} \right)\frac{d}{dx}\left( 1 - 2x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = a + \frac{\sec x \tan x}{\sec x} + \frac{1}{\left( \log x \right)}\left( \frac{1}{x} \right) - \frac{1}{2}\left( \frac{1}{1 - 2x} \right)\left( - 2 \right)\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ a + \tan x + \frac{1}{x \log x} + \frac{1}{1 - 2x} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{e^{ax} \sec x \log x}{\sqrt{1 - 2x}}\left[ a + \tan x + \frac{1}{x \log x} + \frac{1}{1 - 2x} \right] \left[ \text{ Using equation }\left( i \right) \right]\]
APPEARS IN
संबंधित प्रश्न
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\sin \left( \frac{1 + x^2}{1 - x^2} \right)\] ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
If \[y = \sqrt{x^2 + a^2}\] prove that \[y\frac{dy}{dx} - x = 0\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
Differentiate \[\left( x^x \right) \sqrt{x}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\]
If y = etan x, then (cos2 x)y2 =
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`