हिंदी

Find D Y D X Y = E a X ⋅ Sec X ⋅ Log X √ 1 − 2 X ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find  \[\frac{dy}{dx}\]  \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?

 

उत्तर

\[\text{ We have, y } = \frac{e^{ax} \sec x \log x}{\sqrt{1 - 2x}} . . . \left( i \right)\]
\[ \Rightarrow y = \frac{e^{ax} \sec x \log x}{\left( 1 - 2x \right)^\frac{1}{2}}\]

Taking log on both sides 

\[\log y = \log e^{ax} + logsec x + \log \log x - \frac{1}{2}\log\left( 1 - 2x \right) \]
\[ \Rightarrow \log y = ax + \log\left( \sec x \right) + \log\left( \log x \right) - \frac{1}{2}\log\left( 1 - 2x \right) \]

Differentiating with respect to x using chain rule,

\[\frac{1}{y}\frac{dy}{dx} = \frac{d}{dx}\left( ax \right) + \frac{d}{dx}\left( \log \sec x \right) + \frac{d}{dx}\left( \log \log x \right) - \frac{1}{2}\log\left( 1 - 2x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = a + \frac{1}{\sec x}\frac{d}{dx}\left( \sec x \right) + \frac{1}{\log x}\frac{d}{dx}\left( \log x \right) - \frac{1}{2}\left( \frac{1}{1 - 2x} \right)\frac{d}{dx}\left( 1 - 2x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = a + \frac{\sec x \tan x}{\sec x} + \frac{1}{\left( \log x \right)}\left( \frac{1}{x} \right) - \frac{1}{2}\left( \frac{1}{1 - 2x} \right)\left( - 2 \right)\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ a + \tan x + \frac{1}{x \log x} + \frac{1}{1 - 2x} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{e^{ax} \sec x \log x}{\sqrt{1 - 2x}}\left[ a + \tan x + \frac{1}{x \log x} + \frac{1}{1 - 2x} \right] \left[ \text{ Using equation }\left( i \right) \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.05 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.05 | Q 22 | पृष्ठ ८९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate \[3^{e^x}\] ?


Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?


Differentiate \[\frac{x^2 + 2}{\sqrt{\cos x}}\] ?


Differentiate \[e^{ax} \sec x \tan 2x\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


Differentiate  \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\]  ?


Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Differentiate \[x^{\sin x}\]  ?


Differentiate \[{10}^{ \log \sin x }\] ?


Differentiate \[{10}^\left( {10}^x \right)\] ?


Differentiate \[\left( \sin^{- 1} x \right)^x\] ?


Differentiate  \[\left( x^x \right) \sqrt{x}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


If  \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?

 


The derivative of the function \[\cot^{- 1} \left| \left( \cos 2 x \right)^{1/2} \right| \text{ at } x = \pi/6 \text{ is }\] ______ .


If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


Find the second order derivatives of the following function  log (log x)  ?


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?


If x = sin ty = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?


If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.


\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\]  then find the value of λ ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If x = at2, y = 2 at, then \[\frac{d^2 y}{d x^2} =\] 

 


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 '' (x) − xf(x) =

 


If y = (sin−1 x)2, then (1 − x2)y2 is equal to

 


If y = etan x, then (cos2 x)y2 =


If y = xx, prove that \[\frac{d^2 y}{d x^2} - \frac{1}{y} \left( \frac{dy}{dx} \right)^2 - \frac{y}{x} = 0 .\]


If `x=a (cos t +t sint )and y= a(sint-cos t )`  Prove that `Sec^3 t/(at),0<t< pi/2` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×