Advertisements
Advertisements
प्रश्न
Differentiate \[{10}^{ \log \sin x }\] ?
उत्तर
\[\text{ Let y} = {10}^{\log \sin x} . . . \left( i \right)\]
\[\text{ Taking log on both sides }, \]
\[\log y = \log {10}^{\log \sin x} \]
\[ \Rightarrow \log y = \log \sin x \log10 \]
\[\text{ Differentiating with respect to x}, \]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \log10\frac{d}{dx}\log \sin x \]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \log10\frac{1}{\sin x}\frac{d}{dx}\left( \sin x \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \log10\left( \frac{1}{\sin x} \right)\left( \cos x \right)\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \log10 \times \cot x \right]\]
\[ \Rightarrow \frac{dy}{dx} = {10}^{\log \sin x} \times \log10 \times \cot x \left[ \text{ using equation } \left( i \right) \right]\]
APPEARS IN
संबंधित प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\sin^2 \left\{ \log \left( 2x + 3 \right) \right\}\] ?
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{a + \sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] ?
Differentiate \[\sin^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right)\] with respect to x.
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\log x }+ \left( \log x \right)^x\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
If \[y = \sqrt{\cos x + \sqrt{\cos x + \sqrt{\cos x + . . . to \infty}}}\] , prove that \[\frac{dy}{dx} = \frac{\sin x}{1 - 2 y}\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Find \[\frac{dy}{dx}\] , when \[x = \cos^{- 1} \frac{1}{\sqrt{1 + t^2}} \text{ and y } = \sin^{- 1} \frac{t}{\sqrt{1 + t^2}}, t \in R\] ?
If \[x = 10 \left( t - \sin t \right), y = 12 \left( 1 - \cos t \right), \text { find } \frac{dy}{dx} .\] ?
Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with respect to \[\sec^{- 1} x\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
Differential coefficient of sec(tan−1 x) is ______.
If \[f\left( x \right) = \sqrt{x^2 - 10x + 25}\] then the derivative of f (x) in the interval [0, 7] is ____________ .
Find the second order derivatives of the following function e6x cos 3x ?
If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
\[\text { If }y = A e^{- kt} \cos\left( pt + c \right), \text { prove that } \frac{d^2 y}{d t^2} + 2k\frac{d y}{d t} + n^2 y = 0, \text { where } n^2 = p^2 + k^2 \] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .
f(x) = xx has a stationary point at ______.