हिंदी

Differentiate Sin − 1 ( 2 X √ 1 − X 2 ) with Respect to Sec − 1 ( 1 √ 1 − X 2 ) X ∈ ( 1 √ 2 , 1 ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?

योग

उत्तर

\[\text {  Let, u }= \sin^{- 1} \left( 2x\sqrt{1 - x^2} \right)\]

\[ \text { Put x } = \sin\theta\]

\[ \Rightarrow u = \sin^{- 1} \left( 2\sin\theta\sqrt{1 - \sin^2 \theta} \right)\]

\[ \Rightarrow u = \sin^{- 1} \left( 2 \sin\theta \cos\theta \right) \]

\[ \Rightarrow u = \sin^{- 1} \left( \sin2\theta \right) . . . \left( i \right)\]

\[\text { And, } \]

\[\text { Let, v } = se c^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\]

\[ \Rightarrow v = se c^{- 1} \left( \frac{1}{\sqrt{1 - \sin^2 \theta}} \right) \]

\[ \Rightarrow v = se c^{- 1} \left( \frac{1}{\cos\theta} \right) \]

\[ \Rightarrow v = se c^{- 1} \left( sec\theta \right) \]

\[ \Rightarrow v = \cos^{- 1} \left( \frac{1}{\frac{1}{\cos\theta}} \right) \left[ \text { Since }, se c^{- 1} x = \cos^{- 1} \left( \frac{1}{x} \right) \right]\]

\[ \Rightarrow v = \cos^{- 1} \left( \cos\theta \right) . . . \left( ii \right)\]

\[\text { Here }, \]

\[ x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\]

\[ \Rightarrow \sin\theta \in \left( \frac{1}{\sqrt{2}}, 1 \right)\]

\[ \Rightarrow \theta \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right)\]

\[\text { So, from equation } \left( i \right), \]

\[ u = 2\theta ........\left[ \text { Since }, \sin^{- 1} \left( \sin\theta \right) = \theta, \text{ if }\theta \in \left( - \frac{\pi}{2}, \frac{\pi}{2} \right) \right] \]

\[\text { Let, u }= 2 \sin^{- 1} x .........\left[ \text { Since,} x = \sin\theta \right]\]

Differentiating it with respect to x,

\[\frac{du}{dx} = 2\left( \frac{1}{\sqrt{1 - x^2}} \right)\]

\[ \Rightarrow \frac{du}{dx} = \frac{2}{\sqrt{1 - x^2}} . . . \left( iii \right)\]

\[\text { And, from equation } \left( ii \right), \]

\[v = \theta \left[ \text{ Since,} \cos^{- 1} \left( \cos\theta \right) = \theta, \text { if } \theta \in \left[ 0, \pi \right] \right]\]

\[ \Rightarrow v = \sin^{- 1} x \left[ \text { Since }, x = \sin\theta \right]\]

Differentiating it with respect to x,

\[\frac{dv}{dx} = \frac{1}{\sqrt{1 - x^2}} . . . \left( iv \right)\]

\[\text {dividing equation } \left( iii \right) by \left( iv \right), \]

\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{2}{\sqrt{1 - x^2}} \times \frac{\sqrt{1 - x^2}}{1}\]

\[ \therefore \frac{du}{dv} = 2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.08 [पृष्ठ ११२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.08 | Q 7.2 | पृष्ठ ११२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles log cos x ?


Differentiate \[3^{e^x}\] ?


Differentiate (log sin x)?


If  \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\]  prove that \[\frac{dy}{dx} = \sec 2x\] ?


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


Prove that \[\frac{d}{dx} \left\{ \frac{x}{2}\sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{- 1} \frac{x}{a} \right\} = \sqrt{a^2 - x^2}\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{\sqrt{1 + x} + \sqrt{1 - x}}{2} \right\}, 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


If  \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?


If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?


If \[\sin \left( xy \right) + \frac{y}{x} = x^2 - y^2 , \text{ find}  \frac{dy}{dx}\] ?


Differentiate  \[\sin \left( x^x \right)\] ?


Differentiate \[x^{\tan^{- 1} x }\]  ?


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


Find \[\frac{dy}{dx}\]

\[y = x^x + x^{1/x}\] ?


If \[y = \sin \left( x^x \right)\] prove that  \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


If  \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] , prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?

 


\[\text{ If }\cos y = x\cos\left( a + y \right),\text{  where } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?

Find  \[\frac{dy}{dx}\] , when  \[x = \frac{1 - t^2}{1 + t^2} \text{ and y } = \frac{2 t}{1 + t^2}\] ?

 


Differentiate \[\sin^{- 1} \left( 2 ax \sqrt{1 - a^2 x^2} \right)\] with respect to \[\sqrt{1 - a^2 x^2}, \text{ if }-\frac{1}{\sqrt{2}} < ax < \frac{1}{\sqrt{2}}\] ?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?


If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?


If f (x) is an odd function, then write whether `f' (x)` is even or odd ?


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .


If \[f\left( x \right) = \left| x - 3 \right| \text { and }g\left( x \right) = fof \left( x \right)\]  is equal to __________ .


Find the second order derivatives of the following function ex sin 5x  ?


If y = x + tan x, show that  \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?


If x = sin ty = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = tan−1 x, show that \[\left( 1 + x^2 \right) \frac{d^2 y}{d x^2} + 2x\frac{dy}{dx} = 0\] ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?


If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?


If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×