हिंदी

Differentiate Cos − 1 ( X + √ 1 − X 2 √ 2 ) , − 1 < X < 1 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?

योग

उत्तर

\[\text{ Let y } = \cos^{- 1} \left\{ \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right\}\]

\[\text{ Put, x  } = \cos\theta\]

\[ y = \cos^{- 1} \left\{ \frac{\cos\theta + \sqrt{1 - \cos^2 \theta}}{\sqrt{2}} \right\}\]

\[ y = \cos^{- 1} \left\{ \frac{\cos\theta + \sin\theta}{\sqrt{2}} \right\}\]

\[ y = \cos^{- 1} \left\{ \cos\theta\left( \frac{1}{\sqrt{2}} \right) + \sin\theta\left( \frac{1}{\sqrt{2}} \right) \right\}\]

\[ y = \cos^{- 1} \left\{ \cos\theta\cos\frac{\pi}{4} + \sin\theta \sin\frac{\pi}{4} \right\}\]

\[ y = \cos^{- 1} \left\{ \cos\left( \theta - \frac{\pi}{4} \right) \right\} . . . \left( i \right)\]

\[\text{ Here }, - 1 < x < 1\]

\[ \Rightarrow - 1 < \cos\theta < 1 \]

\[ \Rightarrow \frac{3\pi}{4} < \theta < \frac{5\pi}{4} \]

\[ \Rightarrow \left( \frac{3\pi}{4} - \frac{\pi}{4} \right) < \left( \theta - \frac{\pi}{4} \right) < \frac{5\pi}{4} - \frac{\pi}{4}\]

\[ \Rightarrow \left( \frac{\pi}{2} \right) < \left( \theta - \frac{\pi}{4} \right) < \pi\]

\[\text{ So, from equation } \left( i \right), \]

\[ y = \left( \theta - \frac{\pi}{4} \right) ..........\left[ \text{ Since }, \cos^{- 1} \left( \cos\theta \right) = \theta, \text{ if }\theta \in \left[ 0, \pi \right] \right] \]

\[ y = \cos^{- 1} x - \frac{\pi}{4} ............\left[ \text{ Since }, x = \sin\theta \right]\]

\[\text{ Differentiating it with respect to x }, \]

\[\frac{d y}{d x} = - \frac{1}{\sqrt{1 - x^2}} + 0\]

\[\frac{d y}{d x} = - \frac{1}{\sqrt{1 - x^2}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.03 [पृष्ठ ६३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.03 | Q 15 | पृष्ठ ६३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 


Differentiate the following functions from first principles eax+b.


Differentiate \[3^{x^2 + 2x}\] ?


Differentiate \[\log \left( cosec x - \cot x \right)\] ?


Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?


Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?


Differentiate \[\log \left( \cos x^2 \right)\] ?


If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{\sqrt{a^2 - x^2}} \right\}, - a < x < a\] ?


Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?


Differentiate \[\sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \sec^{- 1} \left( \frac{1 + x^2}{1 - x^2} \right), x \in R\] ?


Differentiate 

\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?


If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?


Differentiate \[\left( \log x \right)^x\] ?


Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?


If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?


Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?


Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta  = \frac{\pi}{2}\] ?


If  \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?

 


\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


If \[y = x \left| x \right|\] , find \[\frac{dy}{dx} \text{ for } x < 0\] ?


If \[y = \sin^{- 1} x + \cos^{- 1} x\] ,find \[\frac{dy}{dx}\] ?


If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?


If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


For the curve \[\sqrt{x} + \sqrt{y} = 1, \frac{dy}{dx}\text {  at } \left( 1/4, 1/4 \right)\text {  is }\] _____________ .


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .


If \[y = \sqrt{\sin x + y}, \text { then }\frac{dy}{dx} \text { equals }\] ______________ .


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?


If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]

 


Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×