हिंदी

Sin X = 2 T 1 + T 2 , Tan Y = 2 T 1 − T 2 , Find D Y D X ? - Mathematics

Advertisements
Advertisements

प्रश्न

\[\sin x = \frac{2t}{1 + t^2}, \tan y = \frac{2t}{1 - t^2}, \text { find }  \frac{dy}{dx}\] ?

उत्तर

\[\sin x = \frac{2t}{1 + t^2}\text {  and } \tan y = \frac{2t}{1 - t^2}\]
\[ \Rightarrow x = \sin^{- 1} \frac{2t}{1 + t^2} \text { and y } = \tan^{- 1} \frac{2t}{1 - t^2}\]
\[ \Rightarrow x = 2 \tan^{- 1} t \text { and y } = 2 \tan^{- 1} t\]
\[ \Rightarrow \frac{dx}{dt} = \frac{2t}{1 + t^2} \text { and } \frac{dy}{dt} = \frac{2t}{1 + t^2}\]
\[ \therefore \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\frac{2t}{1 + t^2}}{\frac{2t}{1 + t^2}} = 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Differentiation - Exercise 11.07 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 11 Differentiation
Exercise 11.07 | Q 27 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Differentiate the following functions from first principles ecos x.


Differentiate the following functions from first principles sin−1 (2x + 3) ?


Differentiate (log sin x)?


Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?


Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?


Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?


If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?


If \[y = \sqrt{a^2 - x^2}\] prove that  \[y\frac{dy}{dx} + x = 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + a^2 x^2} - 1}{ax} \right), x \neq 0\] ?


Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{a + b \tan x}{b - a \tan x} \right)\] ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


Find  \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?

 


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


If  \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?

 


\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?


Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?


If \[x = a \left( \theta - \sin \theta \right) and, y = a \left( 1 + \cos \theta \right), \text { find } \frac{dy}{dx} \text{ at }\theta = \frac{\pi}{3} \] ?

 


If  \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at  \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


If \[f\left( 1 \right) = 4, f'\left( 1 \right) = 2\] find the value of the derivative of  \[\log \left( f\left( e^x \right) \right)\] w.r. to x at the point x = 0 ?

 


The differential coefficient of f (log x) w.r.t. x, where f (x) = log x is ___________ .


Let  \[\cup = \sin^{- 1} \left( \frac{2 x}{1 + x^2} \right) \text { and }V = \tan^{- 1} \left( \frac{2 x}{1 - x^2} \right), \text { then } \frac{d \cup}{dV} =\] ____________ .


If \[y = \frac{\log x}{x}\] show that \[\frac{d^2 y}{d x^2} = \frac{2 \log x - 3}{x^3}\] ?


If x = a (1 − cos3 θ), y = a sin3 θ, prove that \[\frac{d^2 y}{d x^2} = \frac{32}{27a} \text { at } \theta = \frac{\pi}{6}\] ?


If x = a(1 − cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{1}{a}\text { at } \theta = \frac{\pi}{2}\] ?


If x = sin ty = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?


If y = ex (sin + cos x) prove that \[\frac{d^2 y}{d x^2} - 2\frac{dy}{dx} + 2y = 0\] ?


If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?


\[ \text { If x } = a \sin t \text { and y } = a\left( \cos t + \log \tan\frac{t}{2} \right), \text { find } \frac{d^2 y}{d x^2} \] ?


\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text {  and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?


\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]

 


If y = etan x, then (cos2 x)y2 =


If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×