Advertisements
Advertisements
प्रश्न
Differentiate \[\sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\] ?
उत्तर
\[\text{Let } y = \sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right)\]
Differentiate it with respect to x we get,
\[\frac{d y}{d x} = \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right) \right\}\]
\[ = \frac{1}{\sqrt{1 - \left( \frac{x}{\sqrt{x^2 + a^2}} \right)^2}} \times \frac{d}{dx}\left( \frac{x}{\sqrt{x^2 + a^2}} \right) \left[ \text{Using chain rule and quotient rule} \right]\]
\[ = \frac{1}{\sqrt{1 - \left( \frac{x}{\sqrt{x^2 + a^2}} \right)^2}} \times \left[ \frac{\left( x^2 + a^2 \right)^\frac{1}{2} \frac{d}{dx}\left( x \right) - x\frac{d}{dx} \left( x^2 + a^2 \right)^\frac{1}{2}}{\left[ \left( x^2 + a^2 \right)^\frac{1}{2} \right]^2} \right]\]
\[ = \frac{\sqrt{x^2 + a^2}}{\sqrt{x^2 + a^2 - x^2}}\left[ \frac{\sqrt{x^2 + a^2} - \frac{x}{2\sqrt{x^2 + a^2}}\frac{d}{dx}\left( x^2 + a^2 \right)}{\left( x^2 + a^2 \right)} \right]\]
\[ = \frac{\sqrt{x^2 + a^2}}{a\left( x^2 + a^2 \right)}\left[ \sqrt{x^2 + a^2} - \frac{x}{2\sqrt{x^2 + a^2}} \times 2x \right]\]
\[ = \frac{\sqrt{x^2 + a^2}}{a\left( x^2 + a^2 \right)}\left[ \frac{x^2 + a^2 - x^2}{\sqrt{x^2 + a^2}} \right]\]
\[ = \frac{a^2}{a\left( x^2 + a^2 \right)}\]
\[ = \frac{a}{\left( x^2 + a^2 \right)}\]
\[So, \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{x}{\sqrt{x^2 + a^2}} \right) \right\} = \frac{a}{\left( x^2 + a^2 \right)}\]
APPEARS IN
संबंधित प्रश्न
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate \[\sqrt{\frac{1 + \sin x}{1 - \sin x}}\] ?
Differentiate \[\sqrt{\frac{1 + x}{1 - x}}\] ?
Differentiate \[\log \left( 3x + 2 \right) - x^2 \log \left( 2x - 1 \right)\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = \log \sqrt{\frac{1 + \tan x}{1 - \tan x}}\] prove that \[\frac{dy}{dx} = \sec 2x\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{\sin x + \cos x}{\sqrt{2}} \right\}, - \frac{3 \pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sin x}{1 + \cos x} \right), - \pi < x < \pi\] ?
If \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[\sqrt{1 - x^2} + \sqrt{1 - y^2} = a \left( x - y \right)\] , prove that \[\frac{dy}{dx} = \frac{\sqrt{1 - y^2}}{1 - x^2}\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
Differentiate \[e^{x \log x}\] ?
Differentiate \[{10}^\left( {10}^x \right)\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
If \[y = \left( \sin x - \cos x \right)^{\sin x - \cos x} , \frac{\pi}{4} < x < \frac{3\pi}{4}, \text{ find} \frac{dy}{dx}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\], when \[x = a t^2 \text{ and } y = 2\ at \] ?
Differentiate x2 with respect to x3
If f (x) = loge (loge x), then write the value of `f' (e)` ?
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .
If \[\sin y = x \cos \left( a + y \right), \text { then } \frac{dy}{dx}\] is equal to ______________ .
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If y = ex cos x, prove that \[\frac{d^2 y}{d x^2} = 2 e^x \cos \left( x + \frac{\pi}{2} \right)\] ?
If x = 2 cos t − cos 2t, y = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
If y2 = ax2 + bx + c, then \[y^3 \frac{d^2 y}{d x^2}\] is
Differentiate `log [x+2+sqrt(x^2+4x+1)]`
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.
If p, q, r, s are real number and pr = 2(q + s) then for the equation x2 + px + q = 0 and x2 + rx + s = 0 which of the following statement is true?