Advertisements
Advertisements
प्रश्न
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
उत्तर
\[\text{ We have }, f\left( x \right) = \left( 1 + x \right)\left( 1 + x^2 \right)\left( 1 + x^4 \right)\left( 1 + x^8 \right)\]
\[\text {Taking log on both sides }, \]
\[\log f\left( x \right) = \log\left( 1 + x \right) + \log\left( 1 + x^2 \right) + \log\left( 1 + x^4 \right) + \log\left( 1 + x^8 \right)\]
\[ \Rightarrow \frac{d}{dx}\left\{ \log f\left( x \right) \right\} = \frac{d}{dx}\left\{ \log\left( 1 + x \right) + \log\left( 1 + x^2 \right) + \log\left( 1 + x^4 \right) + \log\left( 1 + x^8 \right) \right\}\]
\[ \Rightarrow \frac{1}{f\left( x \right)}f'\left( x \right) = \frac{1}{1 + x} + \frac{2x}{1 + x^2} + \frac{4 x^3}{1 + x^4} + \frac{8 x^7}{1 + x^8}\]
\[ \Rightarrow f'\left( x \right) = \left( 1 + x \right)\left( 1 + x^2 \right)\left( 1 + x^4 \right)\left( 1 + x^8 \right)\left( \frac{1}{1 + x} + \frac{2x}{1 + x^2} + \frac{4 x^3}{1 + x^4} + \frac{8 x^7}{1 + x^8} \right)\]
\[ \Rightarrow f'\left( 1 \right) = \left\{ 1 + \left( 1 \right) \right\}\left\{ 1 + \left( 1 \right)^2 \right\}\left\{ 1 + \left( 1 \right)^4 \right\}\left\{ 1 + \left( 1 \right)^8 \right\}\left\{ \frac{1}{1 + \left( 1 \right)} + \frac{2\left( 1 \right)}{1 + \left( 1 \right)^2} + \frac{4 \left( 1 \right)^3}{1 + \left( 1 \right)^4} + \frac{8 \left( 1 \right)^7}{1 + \left( 1 \right)^8} \right\}\]
\[ \Rightarrow f'\left( 1 \right) = 2 \times 2 \times 2 \times 2\left\{ \frac{1}{2} + \frac{2}{2} + \frac{4}{2} + \frac{8}{2} \right\}\]
\[ \Rightarrow f'\left( 1 \right) = 2 \times 2 \times 2 \times 2 \times \frac{1}{2}\left\{ 1 + 2 + 4 + 8 \right\}\]
\[ \Rightarrow f'\left( 1 \right) = 8 \times 15 = 120\]
APPEARS IN
संबंधित प्रश्न
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles eax+b.
Differentiate \[\sqrt{\frac{a^2 - x^2}{a^2 + x^2}}\] ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
Differentiate \[e^x \log \sin 2x\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
If \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
Differentiate
\[\tan^{- 1} \left( \frac{\cos x + \sin x}{\cos x - \sin x} \right), \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[xy = 1\] prove that \[\frac{dy}{dx} + y^2 = 0\] ?
If \[y \sqrt{x^2 + 1} = \log \left( \sqrt{x^2 + 1} - x \right)\] ,Show that \[\left( x^2 + 1 \right) \frac{dy}{dx} + xy + 1 = 0\] ?
Differentiate \[\left( \sin x \right)^{\cos x}\] ?
If `y=(sinx)^x + sin^-1 sqrtx "then find" dy/dx`
If \[y = \sin \left( x^x \right)\] prove that \[\frac{dy}{dx} = \cos \left( x^x \right) \cdot x^x \left( 1 + \log x \right)\] ?
If \[e^y = y^x ,\] prove that\[\frac{dy}{dx} = \frac{\left( \log y \right)^2}{\log y - 1}\] ?
If \[\frac{dy}{dx}\] when \[x = a \cos \theta \text{ and } y = b \sin \theta\] ?
Find \[\frac{dy}{dx}\] ,When \[x = a \left( 1 - \cos \theta \right) \text{ and } y = a \left( \theta + \sin \theta \right) \text{ at } \theta = \frac{\pi}{2}\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate \[\tan^{- 1} \left( \frac{x - 1}{x + 1} \right)\] with respect to \[\sin^{- 1} \left( 3x - 4 x^3 \right), \text { if }- \frac{1}{2} < x < \frac{1}{2}\] ?
If \[- \frac{\pi}{2} < x < 0 \text{ and y } = \tan^{- 1} \sqrt{\frac{1 - \cos 2x}{1 + \cos 2x}}, \text{ find } \frac{dy}{dx}\] ?
If \[y = \sec^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right)\] then write the value of \[\frac{dy}{dx} \] ?
If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \] to ∞, then find the value of \[\frac{dy}{dx}\] ?
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[\sin^{- 1} \left( \frac{x^2 - y^2}{x^2 + y^2} \right) = \text { log a then } \frac{dy}{dx}\] is equal to _____________ .
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If y = a xn + 1 + bx−n and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\] then write the value of λ ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If x = a cos nt − b sin nt, then \[\frac{d^2 x}{d t^2}\] is
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
Differentiate `log [x+2+sqrt(x^2+4x+1)]`