Advertisements
Advertisements
प्रश्न
Find the derivative of the function f (x) given by \[f\left( x \right) = \left( 1 + x \right) \left( 1 + x^2 \right) \left( 1 + x^4 \right) \left( 1 + x^8 \right)\] and hence find `f' (1)` ?
उत्तर
\[\text{ We have }, f\left( x \right) = \left( 1 + x \right)\left( 1 + x^2 \right)\left( 1 + x^4 \right)\left( 1 + x^8 \right)\]
\[\text {Taking log on both sides }, \]
\[\log f\left( x \right) = \log\left( 1 + x \right) + \log\left( 1 + x^2 \right) + \log\left( 1 + x^4 \right) + \log\left( 1 + x^8 \right)\]
\[ \Rightarrow \frac{d}{dx}\left\{ \log f\left( x \right) \right\} = \frac{d}{dx}\left\{ \log\left( 1 + x \right) + \log\left( 1 + x^2 \right) + \log\left( 1 + x^4 \right) + \log\left( 1 + x^8 \right) \right\}\]
\[ \Rightarrow \frac{1}{f\left( x \right)}f'\left( x \right) = \frac{1}{1 + x} + \frac{2x}{1 + x^2} + \frac{4 x^3}{1 + x^4} + \frac{8 x^7}{1 + x^8}\]
\[ \Rightarrow f'\left( x \right) = \left( 1 + x \right)\left( 1 + x^2 \right)\left( 1 + x^4 \right)\left( 1 + x^8 \right)\left( \frac{1}{1 + x} + \frac{2x}{1 + x^2} + \frac{4 x^3}{1 + x^4} + \frac{8 x^7}{1 + x^8} \right)\]
\[ \Rightarrow f'\left( 1 \right) = \left\{ 1 + \left( 1 \right) \right\}\left\{ 1 + \left( 1 \right)^2 \right\}\left\{ 1 + \left( 1 \right)^4 \right\}\left\{ 1 + \left( 1 \right)^8 \right\}\left\{ \frac{1}{1 + \left( 1 \right)} + \frac{2\left( 1 \right)}{1 + \left( 1 \right)^2} + \frac{4 \left( 1 \right)^3}{1 + \left( 1 \right)^4} + \frac{8 \left( 1 \right)^7}{1 + \left( 1 \right)^8} \right\}\]
\[ \Rightarrow f'\left( 1 \right) = 2 \times 2 \times 2 \times 2\left\{ \frac{1}{2} + \frac{2}{2} + \frac{4}{2} + \frac{8}{2} \right\}\]
\[ \Rightarrow f'\left( 1 \right) = 2 \times 2 \times 2 \times 2 \times \frac{1}{2}\left\{ 1 + 2 + 4 + 8 \right\}\]
\[ \Rightarrow f'\left( 1 \right) = 8 \times 15 = 120\]
APPEARS IN
संबंधित प्रश्न
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate log7 (2x − 3) ?
Differentiate logx 3 ?
Differentiate \[\sqrt{\frac{1 - x^2}{1 + x^2}}\] ?
Differentiate \[e^\sqrt{\cot x}\] ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
If \[y = \sqrt{x + 1} + \sqrt{x - 1}\] , prove that \[\sqrt{x^2 - 1}\frac{dy}{dx} = \frac{1}{2}y\] ?
If \[y = \frac{x}{x + 2}\] , prove tha \[x\frac{dy}{dx} = \left( 1 - y \right) y\] ?
If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Differentiate \[x^{\cos^{- 1} x}\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^x + \left( \sin x \right)^x\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[y = \log\frac{x^2 + x + 1}{x^2 - x + 1} + \frac{2}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{3} x}{1 - x^2} \right), \text{ find } \frac{dy}{dx} .\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
If \[y = \sqrt{x + \sqrt{x + \sqrt{x + . . . to \infty ,}}}\] prove that \[\frac{dy}{dx} = \frac{1}{2 y - 1}\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
Find \[\frac{dy}{dx}\] when \[x = \frac{2 t}{1 + t^2} \text{ and } y = \frac{1 - t^2}{1 + t^2}\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
Differentiate \[\cos^{- 1} \left( 4 x^3 - 3x \right)\] with respect to \[\tan^{- 1} \left( \frac{\sqrt{1 - x^2}}{x} \right), \text{ if }\frac{1}{2} < x < 1\] ?
Differential coefficient of sec(tan−1 x) is ______.
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If \[y = e^{\tan^{- 1} x}\] prove that (1 + x2)y2 + (2x − 1)y1 = 0 ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If x = sin t and y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] .