मराठी

If Y = { Log Cos X Sin X } { Log Sin X Cos X } − 1 + Sin − 1 ( 2 X 1 + X 2 ) , Find D Y D X at X = π 4 ? - Mathematics

Advertisements
Advertisements

प्रश्न

If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?

बेरीज

उत्तर

\[\text{ We have, y } = \left[ \log_{\cos x} \sin x \right] \left[ \log_{\sin x} \cos x \right]^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\]

\[ \Rightarrow y = \left[ \log_{\cos x }\sin x \right]\left[ \log_{\cos x }\sin x \right] + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) ..........\left[ \because \log_a b = \left( \log_b a \right)^{- 1} \right]\]

\[ \Rightarrow y = \left[ \frac{\log \sin x}{\log \cos x} \right]^2 + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) ..........\left[ \because \log_a b = \frac{\log b}{\log a} \right]\]

Differentiating with respect to x,

\[\frac{dy}{dx} = \frac{d}{dx} \left[ \frac{\log \sin x}{\log \cos x} \right]^2 + \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\}\]

\[ \Rightarrow \frac{dy}{dx} = 2\left[ \frac{\log \sin x}{\log \cos x} \right]\frac{d}{dx}\left( \frac{\log \sin x}{\log \cos x} \right) + \frac{1}{\sqrt{1 - \left( \frac{2x}{1 + x^2} \right)^2}} \times \frac{d}{dx}\left[ \frac{2x}{1 + x^2} \right] \]

\[ \Rightarrow \frac{dy}{dx} = 2\left[ \frac{\log \sin x}{\log \cos x} \right]\left[ \frac{\left( \log \cos x \right)\frac{d}{dx}\left( \log \sin x \right) - \log \sin x\frac{d}{dx}\left( \log \cos x \right)}{\left( \log \cos x \right)^2} \right] + \left[ \frac{\left( 1 + x^2 \right)}{\sqrt{1 + x^4 - 2 x^2}} \right]\left[ \frac{\left( 1 + x^2 \right)\left( 2 \right) - \left( 2x \right)\left( 2x \right)}{\left( 1 + x^2 \right)^2} \right] \]

\[ \Rightarrow \frac{dy}{dx} = 2\left[ \frac{\log \sin x}{\log \cos x} \right]\left[ \frac{\log \cos x \times \frac{1}{\sin x}\frac{d}{dx}\left( \sin x \right) - \log \sin x \times \frac{1}{\cos x}\frac{d}{dx}\left( \cos x \right)}{\left( \log \cos x \right)^2} \right] + \left[ \frac{\left( 1 + x^2 \right)}{\sqrt{1 + x^4 - 2 x^2}} \right]\left[ \frac{\left( 1 + x^2 \right)\left( 2 \right) - \left( 2x \right)\left( 2x \right)}{\left( 1 + x^2 \right)^2} \right] \]

\[ \Rightarrow \frac{dy}{dx} = 2\left[ \frac{\log \sin x}{\log \cos x} \right]\left[ \frac{\log \cos x \times \left( \frac{\cos x}{\sin x} \right) + \log \sin x \times \left( \frac{\sin x}{\cos x} \right)}{\left( \log \cos x \right)^2} \right] + \left[ \frac{1 + x^2}{\sqrt{\left( 1 - x^2 \right)^2}} \right]\left[ \frac{2 + 2 x^2 - 4 x^2}{\left( 1 + x^2 \right)^2} \right]\]

\[ \Rightarrow \frac{dy}{dx} = 2\frac{\log \sin x}{\left( \log \cos x \right)^3}\left( \cot x \log \cos x + \tan x \log \sin x \right) + \frac{2}{1 + x^2}\]

\[\text{ put x } = \frac{\pi}{4}\]

\[ \Rightarrow \frac{dy}{dx} = 2\left\{ \frac{\log \sin\frac{\pi}{4}}{\left( \log \cos\frac{\pi}{4} \right)^3} \right\} \left( \cot\frac{\pi}{4} \log \cos\frac{\pi}{4} + \tan\frac{\pi}{4} \log \sin\frac{\pi}{4} \right) + 2\left\{ \frac{1}{1 + \left( \frac{\pi}{4} \right)^2} \right\}\]

\[ \Rightarrow \frac{dy}{dx} = 2\left\{ \frac{1}{\left( \log\frac{1}{\sqrt{2}} \right)^2} \right\}\left( 1 \times \log\frac{1}{\sqrt{2}} + 1 \times \log\frac{1}{\sqrt{2}} \right) + 2\left( \frac{16}{16 + \pi^2} \right) \]

\[ \Rightarrow \frac{dy}{dx} = 2 \times \frac{2\log\left( \frac{1}{\sqrt{2}} \right)}{\left\{ \log\left( \frac{1}{\sqrt{2}} \right) \right\}^2} + \frac{32}{16 + \pi^2}\]

\[ \Rightarrow \frac{dy}{dx} = 4\frac{1}{\log\left( \frac{1}{\sqrt{2}} \right)} + \frac{32}{16 + \pi^2}\]

\[ \Rightarrow \frac{dy}{dx} = 4\frac{1}{- \frac{1}{2}\log2} + \frac{32}{16 + \pi^2}\]

\[ \Rightarrow \frac{dy}{dx} = - \frac{8}{\log2} + \frac{32}{16 + \pi^2}\]

\[So, \left( \frac{dy}{dx} \right)_{x = \frac{\pi}{4}} = 8\left[ \frac{4}{16 + \pi^2} - \frac{1}{\log2} \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.04 [पृष्ठ ७५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.04 | Q 30 | पृष्ठ ७५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate the following functions from first principles x2ex ?


Differentiate log7 (2x − 3) ?


Differentiate `2^(x^3)` ?


Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?


Differentiate \[\frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} - \sqrt{x^2 - 1}}\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that  \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?


If \[y = \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}\] ,  prove that \[\left( 1 - x^2 \right) \frac{dy}{dx} = x + \frac{y}{x}\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?


Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?


Differentiate  \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?


 Differentiate \[\tan^{- 1} \left( \frac{x - a}{x + a} \right)\] ?


If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that  \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?

 


If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?


If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?


Find  \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?


Find  \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?

 


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


If \[x^{13} y^7 = \left( x + y \right)^{20}\] prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?

 


Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( \frac{1}{\sqrt{2}}, 1 \right)\] ?


If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


If \[y = \log \sqrt{\tan x}\] then the value of \[\frac{dy}{dx}\text { at }x = \frac{\pi}{4}\] is given by __________ .


Find the second order derivatives of the following function ex sin 5x  ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


If x = 2 cos t − cos 2ty = 2 sin t − sin 2t, find \[\frac{d^2 y}{d x^2}\text{ at } t = \frac{\pi}{2}\] ?


If y = sin (log x), prove that \[x^2 \frac{d^2 y}{d x^2} + x\frac{dy}{dx} + y = 0\] ?


If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?


If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write  \[\frac{d^2 y}{d x^2}\] in terms of y ?


If y = etan x, then (cos2 x)y2 =


If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =

 


If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×