Advertisements
Advertisements
प्रश्न
If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?
उत्तर
\[\text{ Here,} \] \[ \sqrt{y + x} + \sqrt{y - x} = c\]
Differentiating with respect to x,
\[\Rightarrow \frac{d}{dx}\left( \sqrt{y + x} \right) + \frac{d}{dx}\sqrt{y - x} = \frac{d}{dx}\left( c \right)\]
\[ \Rightarrow \frac{1}{2\sqrt{y + x}}\frac{d}{dx}\left( y + x \right) + \frac{1}{2\sqrt{y - x}}\frac{d}{dx}\left( y - x \right) = 0 \]
\[ \Rightarrow \frac{1}{2\sqrt{y + x}}\left( \frac{dy}{dx} + 1 \right) + \frac{1}{2\sqrt{y - x}}\left( \frac{dy}{dx} - 1 \right) = 0\]
\[ \Rightarrow \frac{dy}{dx}\left( \frac{1}{2\sqrt{y + x}} \right) + \frac{dy}{dx}\left( \frac{1}{2\sqrt{y - x}} \right) = \frac{1}{2\sqrt{y - x}} - \frac{1}{2\sqrt{y + x}}\]
\[ \Rightarrow \frac{dy}{dx} \times \frac{1}{2}\left[ \frac{1}{\sqrt{y + x}} + \frac{1}{\sqrt{y - x}} \right] = \frac{1}{2}\left[ \frac{\sqrt{y + x} - \sqrt{y - x}}{\sqrt{y - x}\sqrt{y + x}} \right]\]
\[ \Rightarrow \frac{dy}{dx}\left[ \frac{\sqrt{y - x} + \sqrt{y + x}}{\sqrt{y + x}\sqrt{y - x}} \right] = \left[ \frac{\sqrt{y + x} - \sqrt{y - x}}{\sqrt{y - x}\sqrt{y + x}} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\sqrt{y + x} - \sqrt{y - x}}{\sqrt{y + x} + \sqrt{y - x}} \times \frac{\sqrt{y + x} - \sqrt{y - x}}{\sqrt{y + x} - \sqrt{y - x}} \left[ \text{ rationalizing the denominator } \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( y + x \right) + \left( y - x \right) - 2\sqrt{y + x}\sqrt{y - x}}{y + x - y + x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2y - 2\sqrt{y^2 - x^2}}{2x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{2y}{2x} - \frac{2\sqrt{y^2 - x^2}}{2x}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2 - x^2}{x^2}}\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\]
APPEARS IN
संबंधित प्रश्न
Prove that `y=(4sintheta)/(2+costheta)-theta `
Differentiate the following functions from first principles ecos x.
Differentiate the following functions from first principles log cos x ?
Differentiate the following functions from first principles log cosec x ?
Differentiate sin2 (2x + 1) ?
Differentiate \[3^{x^2 + 2x}\] ?
Differentiate \[\log \sqrt{\frac{1 - \cos x}{1 + \cos x}}\] ?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
If \[y = \log \left\{ \sqrt{x - 1} - \sqrt{x + 1} \right\}\] ,show that \[\frac{dy}{dx} = \frac{- 1}{2\sqrt{x^2 - 1}}\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{\cos x + \sin x}{\sqrt{2}} \right\}, - \frac{\pi}{4} < x < \frac{\pi}{4}\] ?
Differentiate \[\tan^{- 1} \left( \frac{2 a^x}{1 - a^{2x}} \right), a > 1, - \infty < x < 0\] ?
Differentiate \[\cos^{- 1} \left( \frac{1 - x^{2n}}{1 + x^{2n}} \right), < x < \infty\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + bx}{b - ax} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[\sin xy + \cos \left( x + y \right) = 1\] ?
Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
If \[xy \log \left( x + y \right) = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?
If \[\left( \cos x \right)^y = \left( \cos y \right)^x , \text{ find } \frac{dy}{dx}\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Write the derivative of sinx with respect to cos x ?
\[\sin^{- 1} \sqrt{1 - x^2}\] with respect to \[\cot^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right),\text { if }0 < x < 1\] ?
If \[x = a \left( \theta + \sin \theta \right), y = a \left( 1 + \cos \theta \right), \text{ find} \frac{dy}{dx}\] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[\sin y = x \sin \left( a + y \right), \text { then }\frac{dy}{dx} \text { is}\] ____________ .
Find the second order derivatives of the following function sin (log x) ?
If log y = tan−1 x, show that (1 + x2)y2 + (2x − 1) y1 = 0 ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
\[\text { If x } = a \sin t - b \cos t, y = a \cos t + b \sin t, \text { prove that } \frac{d^2 y}{d x^2} = - \frac{x^2 + y^2}{y^3} \] ?
If xy − loge y = 1 satisfies the equation \[x\left( y y_2 + y_1^2 \right) - y_2 + \lambda y y_1 = 0\]
Differentiate the following with respect to x:
\[\cot^{- 1} \left( \frac{1 - x}{1 + x} \right)\]
Show that the height of a cylinder, which is open at the top, having a given surface area and greatest volume, is equal to the radius of its base.
Find the height of a cylinder, which is open at the top, having a given surface area, greatest volume, and radius r.
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.