Advertisements
Advertisements
प्रश्न
Differentiate the following functions from first principles log cos x ?
उत्तर
\[\text{ Let } f\left( x \right) = \log \cos x\]
\[ \Rightarrow f\left( x + h \right) = \log \cos\left( x + h \right)\]
\[ \therefore \frac{d}{dx}\left\{ f\left( x \right) \right\} = \lim_{h \to 0} \frac{f\left( x + h \right) = f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\log \cos\left( x + h \right) - \log \cos x}{h}\]
\[ = \lim_{h \to 0} \frac{\log\frac{\cos\left( x + h \right)}{\cos x}}{h} \left[ \because \log A - \log B = \log\left( \frac{A}{B} \right) \right]\]
\[ = \lim_{h \to 0} \frac{\log\left[ 1 + \left\{ \frac{\cos\left( x + h \right)}{\cos x} - 1 \right\} \right]}{h}\]
\[ = \lim_{h \to 0} \frac{\log\left\{ 1 + \frac{\cos\left( x + h \right) - \cos x}{\cos x} \right\}}{\left\{ \frac{\cos\left( x + h \right) - \cos x}{\cos x} \right\}} \times \lim_{h \to 0} \left\{ \frac{\cos\left( x + h \right) - \cos x}{\cos x} \right\}\]
\[ = 1 \times \lim_{h \to 0} \frac{\cos\left( x + h \right) - \cos x}{\cos x \times h} \left[ \because \lim_{x \to 0} \frac{\log\left( 1 + x \right)}{x} = 1 \right]\]
\[ = \lim_{h \to 0} \frac{- 2\sin\left( \frac{x + h + x}{2} \right)\sin\left( \frac{x + h - x}{2} \right)}{\cos x \times h}\]
\[ = - 2 \lim_{h \to 0} \frac{\sin\left( \frac{2x + h}{2} \right) \times \sin\left( \frac{h}{2} \right)}{2\cos x \times \left( \frac{h}{2} \right)}\]
\[ = \frac{- 2\sin x}{2\cos x} \left[ \because \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]\]
\[ = - \tan x\]
\[So, \frac{d}{dx}\left( \log \cos x \right) = - \tan x\]
APPEARS IN
संबंधित प्रश्न
Differentiate the following functions from first principles e−x.
Differentiate the following functions from first principles log cosec x ?
Differentiate sin (log x) ?
Differentiate `2^(x^3)` ?
Differentiate \[\log \left( \frac{\sin x}{1 + \cos x} \right)\] ?
Differentiate \[e^{\tan^{- 1}} \sqrt{x}\] ?
Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?
Differentiate \[\tan^{- 1} \left( \frac{a + x}{1 - ax} \right)\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
If \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Differentiate \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\cos x} + \left( \sin x \right)^{\tan x}\] ?
If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[y^x = e^{y - x}\] ,prove that \[\frac{dy}{dx} = \frac{\left( 1 + \log y \right)^2}{\log y}\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Write the derivative of sinx with respect to cos x ?
Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?
Differentiate \[\tan^{- 1} \left( \frac{x}{\sqrt{1 - x^2}} \right)\] with respect to \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right), \text { if } - \frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}\] ?
If \[f\left( x \right) = \sqrt{x^2 + 6x + 9}, \text { then } f'\left( x \right)\] is equal to ______________ .
If \[y = \left[ \log \left( x + \sqrt{x^2 + 1} \right) \right]^2\] show that \[\left( 1 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 2\] ?
If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
\[\text{ If x } = a\left( \cos t + \log \tan\frac{t}{2} \right) \text { and y } = a\left( \sin t \right), \text { evaluate } \frac{d^2 y}{d x^2} \text { at t } = \frac{\pi}{3} \] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If f(x) = (cos x + i sin x) (cos 2x + i sin 2x) (cos 3x + i sin 3x) ...... (cos nx + i sin nx) and f(1) = 1, then f'' (1) is equal to
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If \[y = \frac{ax + b}{x^2 + c}\] then (2xy1 + y)y3 =
Differentiate sin(log sin x) ?