मराठी

If Y = Sin (M Sin−1 X), Then (1 − X2) Y2 − Xy1 is Equal to (A) M2y (B) My (C) −M2y (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to

पर्याय

  • m2y

  • my

  • −m2y

  • none of these

MCQ

उत्तर

(c)−m2

Here,

\[y = \sin\left( m \sin^{- 1} x \right)\]
\[ \Rightarrow y_1 = \cos\left( m \sin^{- 1} x \right)\frac{m}{\sqrt{1 - x^2}}\]
\[ \Rightarrow y_2 = - \sin\left( m \sin^{- 1} x \right)\frac{m^2}{\left( 1 - x^2 \right)} + \frac{mx\cos\left( m \sin^{- 1} x \right)}{\left( 1 - x^2 \right)^{3/2}}\]
\[ \Rightarrow y_2 = - \sin\left( m \sin^{- 1} x \right)\frac{m^2}{\left( 1 - x^2 \right)} + \frac{xm\cos\left( m \sin^{- 1} x \right)}{\left( 1 - x^2 \right) \times \sqrt{1 - x^2}}\]
\[ \Rightarrow y_2 = - \sin\left( m \sin^{- 1} x \right)\frac{m^2}{\left( 1 - x^2 \right)} + \frac{x y_1}{\left( 1 - x^2 \right)}\]
\[ \Rightarrow \left( 1 - x^2 \right) y_2 = - y m^2 + x y_1 \]
\[ \Rightarrow \left( 1 - x^2 \right) y_2 - x y_1 = - m^2 y\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 12: Higher Order Derivatives - Exercise 12.3 [पृष्ठ २४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 12 Higher Order Derivatives
Exercise 12.3 | Q 15 | पृष्ठ २४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate sin (log x) ?


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate log7 (2x − 3) ?


Differentiate \[e^{\sin^{- 1} 2x}\] ?


Differentiate \[\sin \left( 2 \sin^{- 1} x \right)\] ?


Differentiate \[\frac{2^x \cos x}{\left( x^2 + 3 \right)^2}\] ?


Differentiate  \[e^x \log \sin 2x\] ?


Differentiate \[\left( \sin^{- 1} x^4 \right)^4\] ?


Differentiate \[\cos \left( \log x \right)^2\] ?


If  \[y = \left( x - 1 \right) \log \left( x - 1 \right) - \left( x + 1 \right) \log \left( x + 1 \right)\] , prove that \[\frac{dy}{dc} = \log \left( \frac{x - 1}{1 + x} \right)\] ?


Differentiate \[\tan^{- 1} \left( \frac{2^{x + 1}}{1 - 4^x} \right), - \infty < x < 0\] ?


Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?


If the derivative of tan−1 (a + bx) takes the value 1 at x = 0, prove that 1 + a2 = b ?


If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?


If \[\sqrt{y + x} + \sqrt{y - x} = c, \text {show that } \frac{dy}{dx} = \frac{y}{x} - \sqrt{\frac{y^2}{x^2} - 1}\] ?


Differentiate \[e^{x \log x}\] ?


Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?


Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 


Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 


If \[x^y \cdot y^x = 1\] , prove that \[\frac{dy}{dx} = - \frac{y \left( y + x \log y \right)}{x \left( y \log x + x \right)}\] ?


If  \[xy = e^{x - y} , \text{ find } \frac{dy}{dx}\] ?

 


If  \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


Differentiate \[\tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right)\] with  respect to \[\sec^{- 1} x\] ?


If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?


If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .


Differential coefficient of sec(tan−1 x) is ______.


If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .


\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .


If \[y = \sqrt{\sin x + y},\text { then } \frac{dy}{dx} =\] __________ .


If \[f\left( x \right) = \left| x^2 - 9x + 20 \right|\]  then `f' (x)` is equal to ____________ .


Find the second order derivatives of the following function x cos x ?


If y = ae2x + be−x, show that, \[\frac{d^2 y}{d x^2} - \frac{dy}{dx} - 2y = 0\] ?


If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?


If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?


If y = a xn + 1 + bxn and \[x^2 \frac{d^2 y}{d x^2} = \lambda y\]  then write the value of λ ?


If x = f(t) and y = g(t), then write the value of \[\frac{d^2 y}{d x^2}\] ?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×