मराठी

Find D Y D X Y = ( X 2 − 1 ) 3 ( 2 X − 1 ) √ ( X − 3 ) ( 4 X − 1 ) ? - Mathematics

Advertisements
Advertisements

प्रश्न

find  \[\frac{dy}{dx}\]  \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?

 

उत्तर

\[\text{ We have, y } = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right)\left( 4x - 1 \right)}} . . . \left( i \right)\]

\[ \Rightarrow y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\left( x - 3 \right)^\frac{1}{2} \left( 4x - 1 \right)^\frac{1}{2}}\]

Taking log on both sides,

\[\log y = \log\left[ \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\left( x - 3 \right)^\frac{1}{2} \left( 4x - 1 \right)^\frac{1}{2}} \right]\]
\[ \Rightarrow \log y = \log \left( x^2 - 1 \right)^3 + \log\left( 2x - 1 \right) - \log \left( x - 3 \right)^\frac{1}{2} - \log \left( 4x - 1 \right)^\frac{1}{2} \]
\[ \Rightarrow \log y = 3 \log\left( x^2 - 1 \right) + \log\left( 2x - 1 \right) - \frac{1}{2}\log\left( x - 3 \right) - \frac{1}{2}\log\left( 4x - 1 \right)\]

Differentiating with respect to x using chain rule,

\[\frac{1}{y}\frac{dy}{dx} = 3\frac{d}{dx}\left\{ \log\left( x^2 - 1 \right) \right\} + \frac{d}{dx}\left\{ \log\left( 2x - 1 \right) \right\} - \frac{1}{2}\frac{d}{dx}\left\{ \log\left( x - 3 \right) \right\} - \frac{1}{2}\left\{ \log\left( 4x - 1 \right) \right\}\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = 3\left( \frac{1}{x^2 - 1} \right)\frac{d}{dx}\left( x^2 - 1 \right) + \frac{1}{\left( 2x - 1 \right)}\frac{d}{dx}\left( 2x - 1 \right) - \frac{1}{2}\left( \frac{1}{x - 3} \right)\frac{d}{dx}\left( x - 3 \right) - \frac{1}{2}\frac{1}{\left( 4x - 1 \right)}\frac{d}{dx}\left( 4x - 1 \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = 3\left( \frac{1}{x^2 - 1} \right)\left( 2x \right) + \frac{1}{2x - 1}\left( 2 \right) - \frac{1}{2}\left( \frac{1}{x - 3} \right)\left( 1 \right) - \frac{1}{2}\left( \frac{1}{4x - 1} \right)\left( 4 \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \left[ \frac{6x}{x^2 - 1} + \frac{2}{2x - 1} - \frac{1}{2\left( x - 3 \right)} - \frac{2}{4x - 1} \right]\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \frac{6x}{x^2 - 1} + \frac{2}{2x - 1} - \frac{1}{2\left( x - 3 \right)} - \frac{2}{4x - 1} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right)\left( 4x - 1 \right)}}\left[ \frac{6x}{x^2 - 1} + \frac{2}{2x - 1} - \frac{1}{2\left( x - 3 \right)} - \frac{2}{4x - 1} \right] \left[ \text{ using equation} \left( i \right) \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Differentiation - Exercise 11.05 [पृष्ठ ८९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 11 Differentiation
Exercise 11.05 | Q 21 | पृष्ठ ८९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Differentiate the following functions from first principles log cosec x ?


Differentiate sin (log x) ?


Differentiate \[e^{\sin} \sqrt{x}\] ?


Differentiate logx 3 ?


Differentiate \[3^{x \log x}\] ?


Differentiate (log sin x)?


Differentiate \[\log \left( \frac{x^2 + x + 1}{x^2 - x + 1} \right)\] ?


Differentiate \[\sqrt{\tan^{- 1} \left( \frac{x}{2} \right)}\] ?


Differentiate \[\frac{e^x \sin x}{\left( x^2 + 2 \right)^3}\] ?


\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


If \[y = \frac{1}{2} \log \left( \frac{1 - \cos 2x }{1 + \cos 2x} \right)\] , prove that \[\frac{ dy }{ dx } = 2 \text{cosec }2x \] ?


Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\]  ?


Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?


Differentiate the following with respect to x

\[\cos^{- 1} \left( \sin x \right)\]


If \[\sin^2 y + \cos xy = k,\] find  \[\frac{dy}{dx}\] at \[x = 1 , \] \[y = \frac{\pi}{4} .\] 


Differentiate \[\left( \log x \right)^x\] ?


Differentiate \[\left( \cos x \right)^x + \left( \sin x \right)^{1/x}\] ?


Find  \[\frac{dy}{dx}\]  \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?

 


Find \[\frac{dy}{dx}\] \[y =  \left( \tan  x \right)^{\cot   x}  +  \left( \cot  x \right)^{\tan  x}\] ?


If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?


If \[x^y + y^x = \left( x + y \right)^{x + y} , \text{ find } \frac{dy}{dx}\] ?


If  \[\left( \sin x \right)^y = x + y\] , prove that \[\frac{dy}{dx} = \frac{1 - \left( x + y \right) y \cot x}{\left( x + y \right) \log \sin x - 1}\] ?

 


If \[xy \log \left( x + y \right) = 1\] , prove that  \[\frac{dy}{dx} = - \frac{y \left( x^2 y + x + y \right)}{x \left( x y^2 + x + y \right)}\] ?


\[\text{ If }y = x^{\tan x} + \sqrt{\frac{x^2 + 1}{2}}, \text{ find} \frac{dy}{dx}\] ?

 


If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?


If \[\left| x \right| < 1 \text{ and y} = 1 + x + x^2 + . . \]  to ∞, then find the value of  \[\frac{dy}{dx}\] ?


If \[y = \log \left| 3x \right|, x \neq 0, \text{ find } \frac{dy}{dx} \] ? 


If f (x) is an even function, then write whether `f' (x)` is even or odd ?


If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?


If y = log (sin x), prove that \[\frac{d^3 y}{d x^3} = 2 \cos \ x \ {cosec}^3 x\] ?


\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?


If \[x = 3 \cos t - 2 \cos^3 t, y = 3\sin t - 2 \sin^3 t,\] find \[\frac{d^2 y}{d x^2} \] ?


If x = t2, y = t3, then \[\frac{d^2 y}{d x^2} =\] 

 


If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to


If logy = tan–1 x, then show that `(1+x^2) (d^2y)/(dx^2) + (2x - 1) dy/dx = 0 .`


Find the minimum value of (ax + by), where xy = c2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×