Advertisements
Advertisements
Question
find \[\frac{dy}{dx}\] \[y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right) \left( 4x - 1 \right)}}\] ?
Solution
\[\text{ We have, y } = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right)\left( 4x - 1 \right)}} . . . \left( i \right)\]
\[ \Rightarrow y = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\left( x - 3 \right)^\frac{1}{2} \left( 4x - 1 \right)^\frac{1}{2}}\]
Taking log on both sides,
\[\log y = \log\left[ \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\left( x - 3 \right)^\frac{1}{2} \left( 4x - 1 \right)^\frac{1}{2}} \right]\]
\[ \Rightarrow \log y = \log \left( x^2 - 1 \right)^3 + \log\left( 2x - 1 \right) - \log \left( x - 3 \right)^\frac{1}{2} - \log \left( 4x - 1 \right)^\frac{1}{2} \]
\[ \Rightarrow \log y = 3 \log\left( x^2 - 1 \right) + \log\left( 2x - 1 \right) - \frac{1}{2}\log\left( x - 3 \right) - \frac{1}{2}\log\left( 4x - 1 \right)\]
Differentiating with respect to x using chain rule,
\[\frac{1}{y}\frac{dy}{dx} = 3\frac{d}{dx}\left\{ \log\left( x^2 - 1 \right) \right\} + \frac{d}{dx}\left\{ \log\left( 2x - 1 \right) \right\} - \frac{1}{2}\frac{d}{dx}\left\{ \log\left( x - 3 \right) \right\} - \frac{1}{2}\left\{ \log\left( 4x - 1 \right) \right\}\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = 3\left( \frac{1}{x^2 - 1} \right)\frac{d}{dx}\left( x^2 - 1 \right) + \frac{1}{\left( 2x - 1 \right)}\frac{d}{dx}\left( 2x - 1 \right) - \frac{1}{2}\left( \frac{1}{x - 3} \right)\frac{d}{dx}\left( x - 3 \right) - \frac{1}{2}\frac{1}{\left( 4x - 1 \right)}\frac{d}{dx}\left( 4x - 1 \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = 3\left( \frac{1}{x^2 - 1} \right)\left( 2x \right) + \frac{1}{2x - 1}\left( 2 \right) - \frac{1}{2}\left( \frac{1}{x - 3} \right)\left( 1 \right) - \frac{1}{2}\left( \frac{1}{4x - 1} \right)\left( 4 \right)\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = \left[ \frac{6x}{x^2 - 1} + \frac{2}{2x - 1} - \frac{1}{2\left( x - 3 \right)} - \frac{2}{4x - 1} \right]\]
\[ \Rightarrow \frac{dy}{dx} = y\left[ \frac{6x}{x^2 - 1} + \frac{2}{2x - 1} - \frac{1}{2\left( x - 3 \right)} - \frac{2}{4x - 1} \right]\]
\[ \Rightarrow \frac{dy}{dx} = \frac{\left( x^2 - 1 \right)^3 \left( 2x - 1 \right)}{\sqrt{\left( x - 3 \right)\left( 4x - 1 \right)}}\left[ \frac{6x}{x^2 - 1} + \frac{2}{2x - 1} - \frac{1}{2\left( x - 3 \right)} - \frac{2}{4x - 1} \right] \left[ \text{ using equation} \left( i \right) \right]\]
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles eax+b.
Differentiate \[\log \left( \tan^{- 1} x \right)\]?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
If \[y = se c^{- 1} \left( \frac{x + 1}{x - 1} \right) + \sin^{- 1} \left( \frac{x - 1}{x + 1} \right), x > 0 . \text{ Find} \frac{dy}{dx}\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, 0 < x < \frac{1}{2}, \text{ find } \frac{dy}{dx} .\] ?
Differentiate \[\sin^{- 1} \left\{ \frac{2^{x + 1} \cdot 3^x}{1 + \left( 36 \right)^x} \right\}\] with respect to x ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
If \[x \sin \left( a + y \right) + \sin a \cos \left( a + y \right) = 0\] Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin a}\] ?
If \[e^x + e^y = e^{x + y} , \text{ prove that } \frac{dy}{dx} = - \frac{e^x \left( e^y - 1 \right)}{e^y \left( e^x - 1 \right)} or \frac{dy}{dx} + e^{y - x} = 0\] ?
If \[\cos y = x \cos \left( a + y \right), \text{ with } \cos a \neq \pm 1, \text{ prove that } \frac{dy}{dx} = \frac{\cos^2 \left( a + y \right)}{\sin a}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[y = x \sin y\] , prove that \[\frac{dy}{dx} = \frac{y}{x \left( 1 - x \cos y \right)}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
If \[x = \frac{\sin^3 t}{\sqrt{\cos 2 t}}, y = \frac{\cos^3 t}{\sqrt{\cos t 2 t}}\] , find\[\frac{dy}{dx}\] ?
If \[x = a\sin2t\left( 1 + \cos2t \right) \text { and y } = b\cos2t\left( 1 - \cos2t \right)\] , show that at \[t = \frac{\pi}{4}, \frac{dy}{dx} = \frac{b}{a}\] ?
Differentiate (log x)x with respect to log x ?
Let g (x) be the inverse of an invertible function f (x) which is derivable at x = 3. If f (3) = 9 and `f' (3) = 9`, write the value of `g' (9)`.
If \[y = x^x , \text{ find } \frac{dy}{dx} \text{ at } x = e\] ?
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
If \[x = 3\sin t - \sin3t, y = 3\cos t - \cos3t \text{ find }\frac{dy}{dx} \text{ at } t = \frac{\pi}{3}\] ?
If y = x + tan x, show that \[\cos^2 x\frac{d^2 y}{d x^2} - 2y + 2x = 0\] ?
If y = 2 sin x + 3 cos x, show that \[\frac{d^2 y}{d x^2} + y = 0\] ?
If y = (tan−1 x)2, then prove that (1 + x2)2 y2 + 2x(1 + x2)y1 = 2 ?
\[\text { If x } = a\left( \cos t + t \sin t \right) \text { and y} = a\left( \sin t - t \cos t \right),\text { then find the value of } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
\[\text { If x } = a\left( \cos2t + 2t \sin2t \right)\text { and y } = a\left( \sin2t - 2t \cos2t \right), \text { then find } \frac{d^2 y}{d x^2} \] ?
If x = t2 and y = t3, find \[\frac{d^2 y}{d x^2}\] ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If y = a cos (loge x) + b sin (loge x), then x2 y2 + xy1 =
If y = sin (m sin−1 x), then (1 − x2) y2 − xy1 is equal to
If \[y = \log_e \left( \frac{x}{a + bx} \right)^x\] then x3 y2 =