Advertisements
Advertisements
Question
If \[f\left( x \right) = \log \left\{ \frac{u \left( x \right)}{v \left( x \right)} \right\}, u \left( 1 \right) = v \left( 1 \right) \text{ and }u' \left( 1 \right) = v' \left( 1 \right) = 2\] , then find the value of `f' (1)` ?
Solution
\[\text{ We have, }f\left( x \right) = \log\left\{ \frac{u\left( x \right)}{v\left( x \right)} \right\}\]
\[\text{ and,} \]
\[ u\left( 1 \right) = v\left( 1 \right) , u'\left( 1 \right) = v'\left( 1 \right) = 2 ....... \left( \text{i} \right)\]
\[\Rightarrow f'\left( x \right) = \frac{d}{dx}\left[ \log\left\{ \frac{u\left( x \right)}{v\left( x \right)} \right\} \right]\]
\[ \Rightarrow f'\left( x \right) = \frac{1}{\left[ \frac{u\left( x \right)}{v\left( x \right)} \right]} \times \frac{d}{dx}\left[ \frac{u\left( x \right)}{v\left( x \right)} \right]\]
\[ \Rightarrow f'\left( x \right) = \frac{v\left( x \right)}{u\left( x \right)} \times \left[ \frac{v\left( x \right)\frac{d}{dx}\left\{ u\left( x \right) \right\} - u\left( x \right)\frac{d}{dx}\left\{ v\left( x \right) \right\}}{\left\{ v\left( x \right) \right\}^2} \right] \]
\[ \Rightarrow f'\left( x \right) = \frac{v\left( x \right)}{u\left( x \right)} \times \left[ \frac{v\left( x \right) \times u'\left( x \right) - u\left( x \right) \times v'\left( x \right)}{\left\{ v\left( x \right) \right\}^2} \right]\]
\[\text{ Putting x = 1, we get }, \]
\[f'\left( 1 \right) = \frac{v\left( 1 \right)}{u\left( 1 \right)} \times \left[ \frac{v\left( 1 \right) \times u'\left( 1 \right) - u\left( 1 \right) \times v'\left( 1 \right)}{\left\{ v\left( 1 \right) \right\}^2} \right]\]
\[ \Rightarrow f'\left( 1 \right) = 1 \times \left[ \frac{u\left( 1 \right) \times 2 - u\left( 1 \right) \times 2}{\left\{ u\left( 1 \right) \right\}^2} \right] .........\left[ \text{ Using eqn } \left( \text{i} \right) \right]\]
\[ \Rightarrow f'\left( 1 \right) = \left[ \frac{0}{\left\{ u\left( 1 \right) \right\}^2} \right] \]
\[ \Rightarrow f'\left( 1 \right) = 0\]
APPEARS IN
RELATED QUESTIONS
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate log7 (2x − 3) ?
Differentiate \[\frac{e^{2x} + e^{- 2x}}{e^{2x} - e^{- 2x}}\] ?
If xy = 4, prove that \[x\left( \frac{dy}{dx} + y^2 \right) = 3 y\] ?
Differentiate \[\cos^{- 1} \left\{ \sqrt{\frac{1 + x}{2}} \right\}, - 1 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{\frac{1 - x}{2}} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?
If \[y = \cos^{- 1} \left( 2x \right) + 2 \cos^{- 1} \sqrt{1 - 4 x^2}, - \frac{1}{2} < x < 0, \text{ find } \frac{dy}{dx} \] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
Differentiate \[\left( 1 + \cos x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[e^{x + y} - x = 0\] ,prove that \[\frac{dy}{dx} = \frac{1 - x}{x}\] ?
If \[y = \sqrt{\log x + \sqrt{\log x + \sqrt{\log x + ... to \infty}}}\], prove that \[\left( 2 y - 1 \right) \frac{dy}{dx} = \frac{1}{x}\] ?
If \[y = e^{x^{e^x}} + x^{e^{e^x}} + e^{x^{x^e}}\], prove that \[\frac{dy}{dx} = e^{x^{e^x}} \cdot x^{e^x} \left\{ \frac{e^x}{x} + e^x \cdot \log x \right\}+ x^{e^{e^x}} \cdot e^{e^x} \left\{ \frac{1}{x} + e^x \cdot \log x \right\} + e^{x^{x^e}} x^{x^e} \cdot x^{e - 1} \left\{ x + e \log x \right\}\]
Find \[\frac{dy}{dx}\],when \[x = a e^\theta \left( \sin \theta - \cos \theta \right), y = a e^\theta \left( \sin \theta + \cos \theta \right)\] ?
Find \[\frac{dy}{dx}\] , when \[x = \frac{3 at}{1 + t^2}, \text{ and } y = \frac{3 a t^2}{1 + t^2}\] ?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
If \[f\left( x \right) = x + 1\] , then write the value of \[\frac{d}{dx} \left( fof \right) \left( x \right)\] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
Given \[f\left( x \right) = 4 x^8 , \text { then }\] _________________ .
Find the second order derivatives of the following function log (sin x) ?
Find the second order derivatives of the following function ex sin 5x ?
Find the second order derivatives of the following function x cos x ?
If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?
If x = sin t, y = sin pt, prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} + p^2 y = 0\] ?
If x = 4z2 + 5, y = 6z2 + 7z + 3, find \[\frac{d^2 y}{d x^2}\] ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
If y = a + bx2, a, b arbitrary constants, then
If y = a sin mx + b cos mx, then \[\frac{d^2 y}{d x^2}\] is equal to
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right) w . r . t . \sin^{- 1} \frac{2x}{1 + x^2},\]tan-11+x2-1x w.r.t. sin-12x1+x2, if x ∈ (–1, 1) .