Advertisements
Advertisements
Question
Options
`y (alpha/(alpha-x) + beta/(beta-x) + gamma/(gamma-x))`
`y/x (alpha/(1/(x-alpha)) + beta/(1/(x-beta)) + gamma/(1/(x-gamma)))`
`y (alpha/(1/(x-alpha)) + beta/(1/(x-beta)) + gamma/(1/(x-gamma)))`
`y/x ((alpha/x)/(1/(x-alpha)) + (beta/x)/(1/(x-beta)) + (gamma/x)/(1/(x-gamma)))`
Solution
`y = (1/x)/(1/x - alpha) + (beta/x)/((1/x - alpha)(1/x - beta)) + (gamma/x^2)/((1/x - alpha)(1/x - beta)(1/x - gamma))`
`=(1/x^2)/((1/x - alpha)(1/x-beta)) + (gamma/x^2)/((1/x - alpha)(1/x-beta)(1/x - gamma))`
`y = (1/x^3)/((1/x - alpha)(1/x - beta))`
`=> log y = -3 log x (1/x - alpha) - log (1/x - beta) - log (1/x - gamma)`
`1/y dy/dx = (-3)/x - 1/(1/x - alpha) (-1/x - alpha) - 1/(1/x - beta) ((-1)/x^2) - 1/(1/x - gamma) (-1/x^2)`
`y = y/x [-3 + 1/x/1/x - alpha + 1/x/(1/x - beta) + 1/x/(1/x - gamma)]`
`y/x (alpha/(1/(x-alpha)) + beta/(1/(x-beta)) + gamma/(1/(x-gamma)))`
APPEARS IN
RELATED QUESTIONS
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate tan 5x° ?
Differentiate logx 3 ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[x \sin 2x + 5^x + k^k + \left( \tan^2 x \right)^3\] ?
Differentiate \[\frac{x^2 \left( 1 - x^2 \right)}{\cos 2x}\] ?
\[\log\left\{ \cot\left( \frac{\pi}{4} + \frac{x}{2} \right) \right\}\] ?
Differentiate \[\log \left( \cos x^2 \right)\] ?
Differentiate \[\cos^{- 1} \left( \frac{x + \sqrt{1 - x^2}}{\sqrt{2}} \right), - 1 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
Find \[\frac{dy}{dx}\] in the following case \[\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\] ?
If \[\log \sqrt{x^2 + y^2} = \tan^{- 1} \left( \frac{y}{x} \right)\] Prove that \[\frac{dy}{dx} = \frac{x + y}{x - y}\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \sin x \right)^{\cos x} + \left( \cos x \right)^{\sin x}\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\log x} + \cos^2 \left( \frac{\pi}{4} \right)\] ?
Find \[\frac{dy}{dx}\]
\[y = x^x + x^{1/x}\] ?
If \[x^m y^n = 1\] , prove that \[\frac{dy}{dx} = - \frac{my}{nx}\] ?
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
If \[y = \left( \cos x \right)^{\left( \cos x \right)^{\left( \cos x \right) . . . \infty}}\],prove that \[\frac{dy}{dx} = - \frac{y^2 \tan x}{\left( 1 - y \log \cos x \right)}\]?
Differentiate\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - 1}{x} \right)\] with respect to \[\sin^{-1} \left( \frac{2x}{1 + x^2} \right)\], If \[- 1 < x < 1, x \neq 0 .\] ?
If \[f'\left( 1 \right) = 2 \text { and y } = f \left( \log_e x \right), \text { find} \frac{dy}{dx} \text { at }x = e\] ?
If \[y = \sin^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right),\text{ find } \frac{dy}{dx}\] ?
If \[y = \left( 1 + \frac{1}{x} \right)^x , \text{ then} \frac{dy}{dx} =\] ____________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If \[y = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!}\] .....to ∞, then write \[\frac{d^2 y}{d x^2}\] in terms of y ?
If y = |x − x2|, then find \[\frac{d^2 y}{d x^2}\] ?
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
If y = a + bx2, a, b arbitrary constants, then
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If x = f(t) cos t − f' (t) sin t and y = f(t) sin t + f'(t) cos t, then\[\left( \frac{dx}{dt} \right)^2 + \left( \frac{dy}{dt} \right)^2 =\]
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to
Differentiate sin(log sin x) ?
Differentiate `log [x+2+sqrt(x^2+4x+1)]`