Advertisements
Advertisements
Question
\[y = \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . \infty}}} \],prove that \[\frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\] ?
Solution
\[{ \text{ We have, y} }= \left( \sin x \right)^{\left( \sin x \right)^{\left( \sin x \right)^{. . . . \infty}}} \]
\[ \Rightarrow y = \left( \sin x \right)^y\]
Taking log on both sides,
\[\log y = \log \left( \sin x \right)^y \]
\[ \Rightarrow \log y = y \log\left( \sin x \right)\]
\[\Rightarrow \frac{1}{y}\frac{dy}{dx} = y\frac{d}{dx}\left\{ \log\left( \sin x \right) \right\} + \log \sin x\frac{dy}{dx}\]
\[ \Rightarrow \frac{1}{y}\frac{dy}{dx} = y\left( \frac{1}{\sin x} \right)\frac{d}{dx}\left( \sin x \right) + \log \sin x\frac{dy}{dx}\]
\[ \Rightarrow \frac{dy}{dx}\left( \frac{1}{y} - \log \sin x \right) = \frac{y}{\sin x}\left( \cos x \right)\]
\[ \Rightarrow \frac{dy}{dx}\left( \frac{1 - y \log \sin x}{y} \right) = y \cot x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y^2 \cot x}{\left( 1 - y \log \sin x \right)}\]
APPEARS IN
RELATED QUESTIONS
Differentiate \[e^{\sin} \sqrt{x}\] ?
Differentiate \[3^{e^x}\] ?
Differentiate \[\frac{3 x^2 \sin x}{\sqrt{7 - x^2}}\] ?
Differentiate \[3 e^{- 3x} \log \left( 1 + x \right)\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
If \[y = x \sin^{- 1} x + \sqrt{1 - x^2}\] ,prove that \[\frac{dy}{dx} = \sin^{- 1} x\] ?
If \[y = e^x + e^{- x}\] prove that \[\frac{dy}{dx} = \sqrt{y^2 - 4}\] ?
Differentiate \[\cos^{- 1} \left\{ \frac{x}{\sqrt{x^2 + a^2}} \right\}\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
If \[y = \sin^{- 1} \left( \frac{x}{1 + x^2} \right) + \cos^{- 1} \left( \frac{1}{\sqrt{1 + x^2}} \right), 0 < x < \infty\] prove that \[\frac{dy}{dx} = \frac{2}{1 + x^2} \] ?
Find \[\frac{dy}{dx}\] in the following case \[xy = c^2\] ?
Find \[\frac{dy}{dx}\] in the following case: \[y^3 - 3x y^2 = x^3 + 3 x^2 y\] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[x y^2 = 1,\] prove that \[2\frac{dy}{dx} + y^3 = 0\] ?
If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\] ?
If \[y = x \sin \left( a + y \right)\] ,Prove that \[\frac{dy}{dx} = \frac{\sin^2 \left( a + y \right)}{\sin \left( a + y \right) - y \cos \left( a + y \right)}\] ?
Differentiate \[{10}^{ \log \sin x }\] ?
Differentiate \[\left( \log x \right)^{ \log x }\] ?
Differentiate\[\left( x + \frac{1}{x} \right)^x + x^\left( 1 + \frac{1}{x} \right)\] ?
Find \[\frac{dy}{dx}\] \[y = e^{3x} \sin 4x \cdot 2^x\] ?
If \[y = \left( \tan x \right)^{\left( \tan x \right)^{\left( \tan x \right)^{. . . \infty}}}\], prove that \[\frac{dy}{dx} = 2\ at\ x = \frac{\pi}{4}\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
If \[x = \frac{1 + \log t}{t^2}, y = \frac{3 + 2\log t}{t}, \text { find } \frac{dy}{dx}\] ?
Differentiate (log x)x with respect to log x ?
Differentiate \[\sin^{- 1} \left( 4x \sqrt{1 - 4 x^2} \right)\] with respect to \[\sqrt{1 - 4 x^2}\] , if \[x \in \left( \frac{1}{2 \sqrt{2}}, \frac{1}{2} \right)\] ?
If \[\frac{\pi}{2} \leq x \leq \frac{3\pi}{2} \text { and y } = \sin^{- 1} \left( \sin x \right), \text { find } \frac{dy}{dx} \] ?
If \[\pi \leq x \leq 2\pi \text { and y } = \cos^{- 1} \left( \cos x \right), \text { find } \frac{dy}{dx}\] ?
If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .
If y = 500 e7x + 600 e−7x, show that \[\frac{d^2 y}{d x^2} = 49y\] ?
If y log (1 + cos x), prove that \[\frac{d^3 y}{d x^3} + \frac{d^2 y}{d x^2} \cdot \frac{dy}{dx} = 0\] ?
If y = (cot−1 x)2, prove that y2(x2 + 1)2 + 2x (x2 + 1) y1 = 2 ?
If \[f\left( x \right) = \frac{\sin^{- 1} x}{\sqrt{1 - x^2}}\] then (1 − x)2 f '' (x) − xf(x) =
If x = f(t) and y = g(t), then \[\frac{d^2 y}{d x^2}\] is equal to
If y = etan x, then (cos2 x)y2 =
If xy = e(x – y), then show that `dy/dx = (y(x-1))/(x(y+1)) .`
If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]
Range of 'a' for which x3 – 12x + [a] = 0 has exactly one real root is (–∞, p) ∪ [q, ∞), then ||p| – |q|| is ______.