Advertisements
Advertisements
Question
Solution
\[\text{ Let, u } = \sin^{- 1} \left( 4x\sqrt{1 - 4 x^2} \right)\]
\[ \text { put } 2x = \cos\theta\]
\[ \Rightarrow u = \sin^{- 1} \left( 2 \times \cos\theta\sqrt{1 - \cos^2 \theta} \right)\]
\[ \Rightarrow u = \sin^{- 1} \left( 2\cos\theta \sin\theta \right) \]
\[ \Rightarrow u = \sin^{- 1} \left( \sin 2\theta \right) . . . \left( i \right)\]
\[ \text { Let, v }= \sqrt{1 - 4 x^2} . . . \left( ii \right)\]
\[\text{Here}, \]
\[ x \in \left( - \frac{1}{2\sqrt{2}}, \frac{1}{2\sqrt{2}} \right)\]
\[ \Rightarrow 2x \in \left( - \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right)\]
\[ \Rightarrow \theta \in \left( \frac{\pi}{4}, \frac{3\pi}{4} \right)\]
\[\text { So, from equation } \left( i \right), \]
\[ u = \pi - 2\theta .....\left[ \text { Since }, \sin^{- 1} \left( sin \theta \right) = \pi - \theta , \text{ if }\theta \in \left( \frac{\pi}{2}, \pi \right) \right]\]
\[ \Rightarrow u = \pi - 2 \cos^{- 1} \left( 2x \right) \left[ \text { Since}, 2x = \cos\theta \right]\]
Differentiating it with respect to x,
\[\frac{du}{dx} = 0 - 2\left( \frac{- 1}{\sqrt{1 - \left( 2x \right)^2}} \right)\frac{d}{dx}\left( 2x \right)\]
\[ \Rightarrow \frac{du}{dx} = \frac{2}{\sqrt{1 - 4 x^2}}\left( 2 \right)\]
\[ \Rightarrow \frac{du}{dx} = \frac{4}{\sqrt{1 - 4 x^2}} . . . \left( iii \right)\]
\[\text { from equation } \left( ii \right)\]
\[\frac{dv}{dx} = \frac{- 4x}{\sqrt{1 - 4 x^2}}\]
\[\text { but,} x \in \left( - \frac{1}{2}, - \frac{1}{2\sqrt{2}} \right)\]
\[\frac{dv}{dx} = \frac{- 4\left( - x \right)}{\sqrt{1 - 4 \left( - x \right)^2}}\]
\[ \Rightarrow \frac{dv}{dx} = \frac{4x}{\sqrt{1 - 4 x^2}} . . . \left( iv \right)\]
\[\text { Diferentiating equation } \left( ii \right) \text { with respect to x }, \]
\[\frac{dv}{dx} = \frac{1}{2\sqrt{1 - 4 x^2}}\frac{d}{dx}\left( 1 - 4 x^2 \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{1}{2\sqrt{1 - 4 x^2}}\left( - 8x \right)\]
\[ \Rightarrow \frac{dv}{dx} = \frac{- 4x}{\sqrt{1 - 4 x^2}} . . . \left( v \right)\]
\[\text { Dividing equation } \left( iii \right) by \left( v \right)\]
\[\frac{\frac{du}{dx}}{\frac{dv}{dx}} = \frac{4}{\sqrt{1 - 4 x^2}} \times \frac{\sqrt{1 - 4 x^2}}{- 4x}\]
\[ \therefore \frac{du}{dv} = - \frac{1}{x}\]
APPEARS IN
RELATED QUESTIONS
If the function f(x)=2x3−9mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.
Differentiate the following functions from first principles eax+b.
Differentiate \[3^{x \log x}\] ?
Differentiate \[e^{3 x} \cos 2x\] ?
Differentiate \[\log \left( x + \sqrt{x^2 + 1} \right)\] ?
Differentiate \[\tan^{- 1} \left( e^x \right)\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
Differentiate \[\sin^{- 1} \left\{ \sqrt{1 - x^2} \right\}, 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{x}{1 + 6 x^2} \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[x^{2/3} + y^{2/3} = a^{2/3}\] ?
Find \[\frac{dy}{dx}\] in the following case \[4x + 3y = \log \left( 4x - 3y \right)\] ?
Find \[\frac{dy}{dx}\] in the following case \[e^{x - y} = \log \left( \frac{x}{y} \right)\] ?
If \[\tan \left( x + y \right) + \tan \left( x - y \right) = 1, \text{ find} \frac{dy}{dx}\] ?
If \[y = \left\{ \log_{\cos x} \sin x \right\} \left\{ \log_{\sin x} \cos x \right\}^{- 1} + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right), \text{ find } \frac{dy}{dx} \text{ at }x = \frac{\pi}{4}\] ?
Differentiate \[e^{\sin x }+ \left( \tan x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = x^{\sin x} + \left( \sin x \right)^x\] ?
Find \[\frac{dy}{dx}\] \[y = \left( \tan x \right)^{\cot x} + \left( \cot x \right)^{\tan x}\] ?
If \[x^{16} y^9 = \left( x^2 + y \right)^{17}\] ,prove that \[x\frac{dy}{dx} = 2 y\] ?
If \[\left( \sin x \right)^y = \left( \cos y \right)^x ,\], prove that \[\frac{dy}{dx} = \frac{\log \cos y - y cot x}{\log \sin x + x \tan y}\] ?
If \[x = \left( t + \frac{1}{t} \right)^a , y = a^{t + \frac{1}{t}} , \text{ find } \frac{dy}{dx}\] ?
If \[x = a \left( \frac{1 + t^2}{1 - t^2} \right) \text { and y } = \frac{2t}{1 - t^2}, \text { find } \frac{dy}{dx}\] ?
Differentiate (log x)x with respect to log x ?
If \[f\left( 0 \right) = f\left( 1 \right) = 0, f'\left( 1 \right) = 2 \text { and y } = f \left( e^x \right) e^{f \left( x \right)}\] write the value of \[\frac{dy}{dx} \text{ at x } = 0\] ?
If f (x) is an odd function, then write whether `f' (x)` is even or odd ?
If \[x = a \cos^3 \theta, y = a \sin^3 \theta, \text { then } \sqrt{1 + \left( \frac{dy}{dx} \right)^2} =\] ____________ .
\[\frac{d}{dx} \left\{ \tan^{- 1} \left( \frac{\cos x}{1 + \sin x} \right) \right\} \text { equals }\] ______________ .
If \[3 \sin \left( xy \right) + 4 \cos \left( xy \right) = 5, \text { then } \frac{dy}{dx} =\] _____________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function x cos x ?
If x = a (θ + sin θ), y = a (1 + cos θ), prove that \[\frac{d^2 y}{d x^2} = - \frac{a}{y^2}\] ?
If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?
If \[y = e^{a \cos^{- 1}} x\] ,prove that \[\left( 1 - x^2 \right)\frac{d^2 y}{d x^2} - x\frac{dy}{dx} - a^2 y = 0\] ?
\[\text { If x } = \cos t + \log \tan\frac{t}{2}, y = \sin t, \text { then find the value of } \frac{d^2 y}{d t^2} \text { and } \frac{d^2 y}{d x^2} \text { at } t = \frac{\pi}{4} \] ?
If \[y = \left| \log_e x \right|\] find\[\frac{d^2 y}{d x^2}\] ?
Let f(x) be a polynomial. Then, the second order derivative of f(ex) is
If \[\frac{d}{dx}\left[ x^n - a_1 x^{n - 1} + a_2 x^{n - 2} + . . . + \left( - 1 \right)^n a_n \right] e^x = x^n e^x\] then the value of ar, 0 < r ≤ n, is equal to