English

If the function f(x)=2x^3−9mx^2+12m^2 x+1, where m>0 attains its maximum and minimum at p and q respectively such that p^2=q, then find the value of m. - Mathematics

Advertisements
Advertisements

Question

If the function f(x)=2x39mx2+12m2x+1, where m>0 attains its maximum and minimum at p and q respectively such that p2=q, then find the value of m.

 

Solution

We have
f(x)=2x39mx2+12m2x+1

f'(x)=6x218mx+12m2
Also, f''(x)=12x18m
Since, f(x) attains its maximum and minimum values at x = p and x = q, respectively, so f '(p) = 0 and

f '(q) = 0
f '(p) = 0

6p218mp+12m2=0

p23mp+2m2=0

(p2m)(pm)=0

p2m =0 or pm=0

p=2m or p=m

Similarly,
f '(q) = 0
q=2m or q=m
Now, consider the following cases:
Case I:
If p = 2m and q = 2m, then

p2=q

4m2=2m

2m2m=0

m(2m1)=0

m=1/2      (m>0)
But, this gives p = 1 as the point of minima, which is not true.

Case II:
If p = 2m and q = m, then
 p2=q

4m2=m

4m2m=0

m(4m1)=0

m=1/4      (m>0)
But, this gives p = 12 as the point of minima, which is not true.

Case III:
If pm and q = 2m, then
 p2=q

m2=2m

m22m=0

m(m2)=0

m=2      (m>0)
For this case, p = 2 and q = 4 are the points of maxima and minima, respectively.

Case IV:
If pm and qm, then
 p2=q

m2=m

m2m=0

m(m1)=0

m=1      (m>0)
But, this gives q = 1 as the point of maxima, which is not true.

Hence, the value of m is 2.

shaalaa.com
  Is there an error in this question or solution?
2014-2015 (March) Patna Set 2

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Differentiate sin2 (2x + 1) ?


Differentiate log7 (2x − 3) ?


If \[y = \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]prove that \[\frac{dy}{dx} = \frac{x - 1}{2x \left( x + 1 \right)}\] ?

 


Differentiate \[\cos^{- 1} \left\{ 2x\sqrt{1 - x^2} \right\}, \frac{1}{\sqrt{2}} < x < 1\] ?


Differentiate \[\tan^{- 1} \left\{ \frac{x}{1 + \sqrt{1 - x^2}} \right\}, - 1 < x < 1\] ?


Differentiate \[\tan^{- 1} \left( \frac{5 x}{1 - 6 x^2} \right), - \frac{1}{\sqrt{6}} < x < \frac{1}{\sqrt{6}}\] ?


If \[x \sqrt{1 + y} + y \sqrt{1 + x} = 0\] , prove that \[\left( 1 + x \right)^2 \frac{dy}{dx} + 1 = 0\]  ?


Differentiate \[\left( \log x \right)^{\cos x}\] ?


Differentiate \[\left( x \cos x \right)^x + \left( x \sin x \right)^{1/x}\] ?


Differentiate  \[x^{x^2 - 3} + \left( x - 3 \right)^{x^2}\] ?


Find  \[\frac{dy}{dx}\] \[y = e^x + {10}^x + x^x\] ?

 


Find \[\frac{dy}{dx}\]  \[y = x^n + n^x + x^x + n^n\] ?

If \[y^x + x^y + x^x = a^b\] ,find \[\frac{dy}{dx}\] ?


Find \[\frac{dy}{dx}\] ,when \[x = \frac{e^t + e^{- t}}{2} \text{ and } y = \frac{e^t - e^{- t}}{2}\] ?


If \[x = \cos t \text{ and y }  = \sin t,\] prove that  \[\frac{dy}{dx} = \frac{1}{\sqrt{3}} \text { at } t = \frac{2 \pi}{3}\] ?

 


Differentiate \[\sin^{- 1} \left( 2x \sqrt{1 - x^2} \right)\] with respect to  \[\sec^{- 1} \left( \frac{1}{\sqrt{1 - x^2}} \right)\], if \[x \in \left( 0, \frac{1}{\sqrt{2}} \right)\] ?


Differentiate \[\left( \cos x \right)^{\sin x }\] with respect to \[\left( \sin x \right)^{\cos x }\]?


If \[y = \tan^{- 1} \left( \frac{1 - x}{1 + x} \right), \text{ find} \frac{dy}{dx}\]  ?


If \[\sin \left( x + y \right) = \log \left( x + y \right), \text { then } \frac{dy}{dx} =\] ___________ .


Find the second order derivatives of the following function  log (log x)  ?


If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?


If x = cos θ, y = sin3 θ, prove that \[y\frac{d^2 y}{d x^2} + \left( \frac{dy}{dx} \right)^2 = 3 \sin^2 \theta\left( 5 \cos^2 \theta - 1 \right)\] ?


If y = cos−1 x, find \[\frac{d^2 y}{d x^2}\] in terms of y alone ?


If y = cosec−1 xx >1, then show that \[x\left( x^2 - 1 \right)\frac{d^2 y}{d x^2} + \left( 2 x^2 - 1 \right)\frac{dy}{dx} = 0\] ?


If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\] 

 


\[\frac{d^{20}}{d x^{20}} \left( 2 \cos x \cos 3 x \right) =\]

 


If x = 2 at, y = at2, where a is a constant, then \[\frac{d^2 y}{d x^2} \text { at x } = \frac{1}{2}\] is 

 


If y = etan x, then (cos2 x)y2 =


If x = a (1 + cos θ), y = a(θ + sin θ), prove that \[\frac{d^2 y}{d x^2} = \frac{- 1}{a}at \theta = \frac{\pi}{2}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×