Advertisements
Advertisements
Question
If y = axn+1 + bx−n, then \[x^2 \frac{d^2 y}{d x^2} =\]
Options
n (n − 1)y
n (n − 1)y
ny
n2y
Solution
(b) n (n+1)y
Here,
\[y = a x^{n + 1} + b x^{- n} \]
\[ \Rightarrow \frac{d y}{d x} = a\left( n + 1 \right) x^n - bn x^{- n - 1} \]
\[ \Rightarrow \frac{d^2 y}{d x^2} = an\left( n + 1 \right) x^{n - 1} + bn\left( n + 1 \right) x^{- n - 2} \]
\[ \therefore x^2 \frac{d^2 y}{d x^2} = x^2 \left\{ an\left( n + 1 \right) x^{n - 1} + bn\left( n + 1 \right) x^{- n - 2} \right\}\]
\[ = n\left( n + 1 \right)\left( a x^{n + 1} + b x^{- n} \right)\]
\[ = n\left( n + 1 \right)y\]
APPEARS IN
RELATED QUESTIONS
If the sum of the lengths of the hypotenuse and a side of a right triangle is given, show that the area of the triangle is maximum, when the angle between them is 60º.
Differentiate the following functions from first principles e−x.
Differentiate the following functions from first principles sin−1 (2x + 3) ?
Differentiate \[3^{x \log x}\] ?
Differentiate \[\tan \left( e^{\sin x }\right)\] ?
Differentiate \[e^{ax} \sec x \tan 2x\] ?
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\], prove that \[2 x\frac{dy}{dx} = \sqrt{x} - \frac{1}{\sqrt{x}}\] ?
If \[y = \frac{e^x - e^{- x}}{e^x + e^{- x}}\] .prove that \[\frac{dy}{dx} = 1 - y^2\] ?
Differentiate \[\sin^{- 1} \left( 2 x^2 - 1 \right), 0 < x < 1\] ?
Differentiate \[\sin^{- 1} \left( 1 - 2 x^2 \right), 0 < x < 1\] ?
Differentiate \[\tan^{- 1} \left( \frac{\sqrt{x} + \sqrt{a}}{1 - \sqrt{xa}} \right)\] ?
Differentiate the following with respect to x:
\[\cos^{- 1} \left( \sin x \right)\]
If \[y = \sin^{- 1} \left( 6x\sqrt{1 - 9 x^2} \right), - \frac{1}{3\sqrt{2}} < x < \frac{1}{3\sqrt{2}}\] \[\frac{dy}{dx} \] ?
If \[y \sqrt{1 - x^2} + x \sqrt{1 - y^2} = 1\] ,prove that \[\frac{dy}{dx} = - \sqrt{\frac{1 - y^2}{1 - x^2}}\] ?
If \[\sec \left( \frac{x + y}{x - y} \right) = a\] Prove that \[\frac{dy}{dx} = \frac{y}{x}\] ?
Differentiate \[\left( \tan x \right)^{1/x}\] ?
Differentiate \[x^{\tan^{- 1} x }\] ?
Differentiate \[x^\left( \sin x - \cos x \right) + \frac{x^2 - 1}{x^2 + 1}\] ?
Differentiate \[x^{x \cos x +} \frac{x^2 + 1}{x^2 - 1}\] ?
Find \[\frac{dy}{dx}\] \[y = \frac{e^{ax} \cdot \sec x \cdot \log x}{\sqrt{1 - 2x}}\] ?
Find \[\frac{dy}{dx}\] \[y = \sin x \sin 2x \sin 3x \sin 4x\] ?
If \[\left( \cos x \right)^y = \left( \tan y \right)^x\] , prove that \[\frac{dy}{dx} = \frac{\log \tan y + y \tan x}{ \log \cos x - x \sec y \ cosec\ y }\] ?
Find \[\frac{dy}{dx}\] , when \[x = b \sin^2 \theta \text{ and } y = a \cos^2 \theta\] ?
Differentiate \[\sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] with respect to \[\cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right), \text { if } 0 < x < 1\] ?
If f (x) = logx2 (log x), the `f' (x)` at x = e is ____________ .
If \[y = \frac{1}{1 + x^{a - b} +^{c - b}} + \frac{1}{1 + x^{b - c} + x^{a - c}} + \frac{1}{1 + x^{b - a} + x^{c - a}}\] then \[\frac{dy}{dx}\] is equal to ______________ .
Find the second order derivatives of the following function sin (log x) ?
If x = a sec θ, y = b tan θ, prove that \[\frac{d^2 y}{d x^2} = - \frac{b^4}{a^2 y^3}\] ?
If x = a (θ − sin θ), y = a (1 + cos θ) prove that, find \[\frac{d^2 y}{d x^2}\] ?
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \cdot \frac{dy}{dx} + y \cos^2 x = 0\] ?
If `x = sin(1/2 log y)` show that (1 − x2)y2 − xy1 − a2y = 0.
If x = a cos nt − b sin nt and \[\frac{d^2 x}{dt} = \lambda x\] then find the value of λ ?
If \[y^\frac{1}{n} + y^{- \frac{1}{n}} = 2x, \text { then find } \left( x^2 - 1 \right) y_2 + x y_1 =\] ?
If `x=a (cos t +t sint )and y= a(sint-cos t )` Prove that `Sec^3 t/(at),0<t< pi/2`